An otoscope is traditionally used to examine the eardrum and ear canal.A diagnosis of otitis media(OM)relies on the experience of clinicians.If an examiner lacks experience,the examination may be difficult and time-co...An otoscope is traditionally used to examine the eardrum and ear canal.A diagnosis of otitis media(OM)relies on the experience of clinicians.If an examiner lacks experience,the examination may be difficult and time-consuming.This paper presents an ear disease classification method using middle ear images based on a convolutional neural network(CNN).Especially the segmentation and classification networks are used to classify an otoscopic image into six classes:normal,acute otitis media(AOM),otitis media with effusion(OME),chronic otitis media(COM),congenital cholesteatoma(CC)and traumatic perforations(TMPs).The Mask R-CNN is utilized for the segmentation network to extract the region of interest(ROI)from otoscopic images.The extracted ROIs are used as guiding features for the classification.The classification is based on transfer learning with an ensemble of two CNN classifiers:EfficientNetB0 and Inception-V3.The proposed model was trained with a 5-fold cross-validation technique.The proposed method was evaluated and achieved a classification accuracy of 97.29%.展开更多
基金This study was supported by a Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning NRF-2020R1A2C1014829the Soonchunhyang University Research Fund.
文摘An otoscope is traditionally used to examine the eardrum and ear canal.A diagnosis of otitis media(OM)relies on the experience of clinicians.If an examiner lacks experience,the examination may be difficult and time-consuming.This paper presents an ear disease classification method using middle ear images based on a convolutional neural network(CNN).Especially the segmentation and classification networks are used to classify an otoscopic image into six classes:normal,acute otitis media(AOM),otitis media with effusion(OME),chronic otitis media(COM),congenital cholesteatoma(CC)and traumatic perforations(TMPs).The Mask R-CNN is utilized for the segmentation network to extract the region of interest(ROI)from otoscopic images.The extracted ROIs are used as guiding features for the classification.The classification is based on transfer learning with an ensemble of two CNN classifiers:EfficientNetB0 and Inception-V3.The proposed model was trained with a 5-fold cross-validation technique.The proposed method was evaluated and achieved a classification accuracy of 97.29%.