Travel time and delay are among the most important measures for gauging a transportation system’s performance. To address the growing problem of congestion in the US, transportation planning legislation mandated the ...Travel time and delay are among the most important measures for gauging a transportation system’s performance. To address the growing problem of congestion in the US, transportation planning legislation mandated the monitoring and analysis of system performance and produced a renewed interest in travel time and delay studies. The use of traditional sensors installed on major roads (e.g. inductive loops) for collecting data is necessary but not sufficient because of their limited coverage and expensive costs for setting up and maintaining the required infrastructure. The GPS-based techniques employed by the University of Delaware have evolved into an automated system, which provides more realistic experience of a traffic flow throughout the road links. However, human error and the weaknesses of using GPS devices in urban settings still have the potential to create inaccuracies. By simultaneously collecting data using three different techniques, the accuracy of the GPS positioning data and the resulting travel time and delay values could be objectively compared for automation and statistically compared for accuracy. It was found that the new technique provided the greatest automation requiring minimal attention of the data collectors and automatically processing the data sets. The data samples were statistically analyzed by using a combination of parametric and nonparametric statistical tests. This analysis greatly favored the GeoStats GPS method over the rest methods.展开更多
In order to explore the travel characteristics and space-time distribution of different groups of bikeshare users,an online analytical processing(OLAP)tool called data cube was used for treating and displaying multi-d...In order to explore the travel characteristics and space-time distribution of different groups of bikeshare users,an online analytical processing(OLAP)tool called data cube was used for treating and displaying multi-dimensional data.We extended and modified the traditionally threedimensional data cube into four dimensions,which are space,date,time,and user,each with a user-specified hierarchy,and took transaction numbers and travel time as two quantitative measures.The results suggest that there are two obvious transaction peaks during the morning and afternoon rush hours on weekdays,while the volume at weekends has an approximate even distribution.Bad weather condition significantly restricts the bikeshare usage.Besides,seamless smartcard users generally take a longer trip than exclusive smartcard users;and non-native users ride faster than native users.These findings not only support the applicability and efficiency of data cube in the field of visualizing massive smartcard data,but also raise equity concerns among bikeshare users with different demographic backgrounds.展开更多
Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to ana...Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to analyze passenger flow characteristics and evaluate travel time reliability for the Nanjing Metro network by visualizing the smart card data of April 2014,April 2015 and April 2016. We performed visualization techniques and comparative analyses to examine the changes in system usage between before and after the system expansion. Specifically,workdays,holidays and weekends were specially segmented for analysis.Results showed that workdays had obvious morning and evening peak hours due to daily commuting,while no obvious peak hours existed in weekends and holidays and the daily traffic was evenly distributed. Besides,some metro stations had a serious directional imbalance,especially during the morning and evening peak hours of workdays. Serious unreliability occurred in morning peaks on workdays and the reliability of new lines was relatively low,meanwhile,new stations had negative effects on exiting stations in terms of reliability. Monitoring the evolution of system usage over years enables the identification of system performance and can serve as an input for improving the metro system quality.展开更多
Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by ...Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by an Ant Colony Algorithm(ACA) performing a searching operation and to develop a rule set searcher which approximates the ACA′s searcher.An attribute-oriented induction methodology was used to explore the relationship between an operations′ sequence and its attributes and a set of rules has been developed.At the end of this paper,the experimental results have shown that the proposed approach has good performance with respect to the quality of solution and the speed of computation.展开更多
Travel time reliability(TTR)is an important measure which has been widely used to represent the traffic conditions on freeways.The objective of this study is to develop a systematic approach to analyzing TTR on roadwa...Travel time reliability(TTR)is an important measure which has been widely used to represent the traffic conditions on freeways.The objective of this study is to develop a systematic approach to analyzing TTR on roadway segments along a corridor.A case study is conducted to illustrate the TTR patterns using vehicle probe data collected on a freeway corridor in Charlotte,North Carolina.A number of influential factors are considered when analyzing TTR,which include,but are not limited to,time of day,day of week,year,and segment location.A time series model is developed and used to predict the TTR.Numerical results clearly indicate the uniqueness of TTR patterns under each case and under different days of week and weather conditions.The research results can provide insightful and objective information on the traffic conditions along freeway segments,and the developed data-driven models can be used to objectively predict the future TTRs,and thus to help transportation planners make informed decisions.展开更多
A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways,...A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective.展开更多
The aim of the paper is to evaluate the impacts of bus lane on bus travel time reliability.The data used are the Geographic Positioning System(GPS) data of two bus lines running parallel streets in Shenzhen,China,one ...The aim of the paper is to evaluate the impacts of bus lane on bus travel time reliability.The data used are the Geographic Positioning System(GPS) data of two bus lines running parallel streets in Shenzhen,China,one of which is a bus lane and the other is a regular lane.Two linear regression models are developed to evaluate the influence of bus lane which has a separated right of way.Other factors including running direction,day of week,time of day,dwell time,and delay at the start point are also considered in the model.Without published time tables,coefficient of variance(CV) of travel time is employed to explore the impacts of bus lane.The results indicate that bus lane can save 22.0% of travel time,reduce 11.5% of the CV of travel time,and decrease the variance of headway by 17.4%.The analysis on bus travel time reliability could help operators and drivers improve the quality of transit service.It also sheds light on how to assess the effectiveness of bus lane for transit planners and service operators.展开更多
The big problem of Big Data is the lack of a machine learning process that scales and finds meaningful features. Humans fill in for the insufficient automation, but the complexity of the tasks outpaces the human mind...The big problem of Big Data is the lack of a machine learning process that scales and finds meaningful features. Humans fill in for the insufficient automation, but the complexity of the tasks outpaces the human mind’s capacity to comprehend the data. Heuristic partition methods may help but still need humans to adjust the parameters. The same problems exist in many other disciplines and technologies that depend on Big Data or Machine Learning. Proposed here is a fractal groupoid-theoretical method that recursively partitions the problem and requires no heuristics or human intervention. It takes two steps. First, make explicit the fundamental causal nature of information in the physical world by encoding it as a causal set. Second, construct a functor F: C C′ on the category of causal sets that morphs causal set C into smaller causal set C′ by partitioning C into a set of invariant groupoid-theoretical blocks. Repeating the construction, there arises a sequence of progressively smaller causal sets C, C′, C″, … The sequence defines a fractal hierarchy of features, with the features being invariant and hence endowed with a physical meaning, and the hierarchy being scale-free and hence ensuring proper scaling at all granularities. Fractals exist in nature nearly everywhere and at all physical scales, and invariants have long been known to be meaningful to us. The theory is also of interest for NP-hard combinatorial problems that can be expressed as a causal set, such as the Traveling Salesman problem. The recursive groupoid partition promoted by functor F works against their combinatorial complexity and appears to allow a low-order polynomial solution. A true test of this property requires special hardware, not yet available. However, as a proof of concept, a suite of sequential, non-heuristic algorithms were developed and used to solve a real-world 120-city problem of TSP on a personal computer. The results are reported.展开更多
文摘Travel time and delay are among the most important measures for gauging a transportation system’s performance. To address the growing problem of congestion in the US, transportation planning legislation mandated the monitoring and analysis of system performance and produced a renewed interest in travel time and delay studies. The use of traditional sensors installed on major roads (e.g. inductive loops) for collecting data is necessary but not sufficient because of their limited coverage and expensive costs for setting up and maintaining the required infrastructure. The GPS-based techniques employed by the University of Delaware have evolved into an automated system, which provides more realistic experience of a traffic flow throughout the road links. However, human error and the weaknesses of using GPS devices in urban settings still have the potential to create inaccuracies. By simultaneously collecting data using three different techniques, the accuracy of the GPS positioning data and the resulting travel time and delay values could be objectively compared for automation and statistically compared for accuracy. It was found that the new technique provided the greatest automation requiring minimal attention of the data collectors and automatically processing the data sets. The data samples were statistically analyzed by using a combination of parametric and nonparametric statistical tests. This analysis greatly favored the GeoStats GPS method over the rest methods.
基金Supported by Projects of International Cooperation and Exchange of the National Natural Science Foundation of China(51561135003)Key Project of National Natural Science Foundation of China(51338003)Scientific Research Foundation of Graduated School of Southeast University(YBJJ1842)
文摘In order to explore the travel characteristics and space-time distribution of different groups of bikeshare users,an online analytical processing(OLAP)tool called data cube was used for treating and displaying multi-dimensional data.We extended and modified the traditionally threedimensional data cube into four dimensions,which are space,date,time,and user,each with a user-specified hierarchy,and took transaction numbers and travel time as two quantitative measures.The results suggest that there are two obvious transaction peaks during the morning and afternoon rush hours on weekdays,while the volume at weekends has an approximate even distribution.Bad weather condition significantly restricts the bikeshare usage.Besides,seamless smartcard users generally take a longer trip than exclusive smartcard users;and non-native users ride faster than native users.These findings not only support the applicability and efficiency of data cube in the field of visualizing massive smartcard data,but also raise equity concerns among bikeshare users with different demographic backgrounds.
基金Sponsored by Projects of International Cooperation and Exchange of the National Natural Science Foundation of China(Grant No.51561135003)Key Project of National Natural Science Foundation of China(Grant No.51338003)
文摘Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to analyze passenger flow characteristics and evaluate travel time reliability for the Nanjing Metro network by visualizing the smart card data of April 2014,April 2015 and April 2016. We performed visualization techniques and comparative analyses to examine the changes in system usage between before and after the system expansion. Specifically,workdays,holidays and weekends were specially segmented for analysis.Results showed that workdays had obvious morning and evening peak hours due to daily commuting,while no obvious peak hours existed in weekends and holidays and the daily traffic was evenly distributed. Besides,some metro stations had a serious directional imbalance,especially during the morning and evening peak hours of workdays. Serious unreliability occurred in morning peaks on workdays and the reliability of new lines was relatively low,meanwhile,new stations had negative effects on exiting stations in terms of reliability. Monitoring the evolution of system usage over years enables the identification of system performance and can serve as an input for improving the metro system quality.
文摘Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by an Ant Colony Algorithm(ACA) performing a searching operation and to develop a rule set searcher which approximates the ACA′s searcher.An attribute-oriented induction methodology was used to explore the relationship between an operations′ sequence and its attributes and a set of rules has been developed.At the end of this paper,the experimental results have shown that the proposed approach has good performance with respect to the quality of solution and the speed of computation.
基金the financial support by the United States Department of Transportation, University Transportation Center through the Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE) at The University of North Carolina at Charlotte (Grant Number: 69A3551747133)
文摘Travel time reliability(TTR)is an important measure which has been widely used to represent the traffic conditions on freeways.The objective of this study is to develop a systematic approach to analyzing TTR on roadway segments along a corridor.A case study is conducted to illustrate the TTR patterns using vehicle probe data collected on a freeway corridor in Charlotte,North Carolina.A number of influential factors are considered when analyzing TTR,which include,but are not limited to,time of day,day of week,year,and segment location.A time series model is developed and used to predict the TTR.Numerical results clearly indicate the uniqueness of TTR patterns under each case and under different days of week and weather conditions.The research results can provide insightful and objective information on the traffic conditions along freeway segments,and the developed data-driven models can be used to objectively predict the future TTRs,and thus to help transportation planners make informed decisions.
基金The Project of Research on Technologyand Devices for Traffic Guidance (Vehicle Navigation)System of Beijing Municipal Commission of Science and Technology(No H030630340320)the Project of Research on theIntelligence Traffic Information Platform of Beijing Education Committee
文摘A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective.
文摘The aim of the paper is to evaluate the impacts of bus lane on bus travel time reliability.The data used are the Geographic Positioning System(GPS) data of two bus lines running parallel streets in Shenzhen,China,one of which is a bus lane and the other is a regular lane.Two linear regression models are developed to evaluate the influence of bus lane which has a separated right of way.Other factors including running direction,day of week,time of day,dwell time,and delay at the start point are also considered in the model.Without published time tables,coefficient of variance(CV) of travel time is employed to explore the impacts of bus lane.The results indicate that bus lane can save 22.0% of travel time,reduce 11.5% of the CV of travel time,and decrease the variance of headway by 17.4%.The analysis on bus travel time reliability could help operators and drivers improve the quality of transit service.It also sheds light on how to assess the effectiveness of bus lane for transit planners and service operators.
文摘The big problem of Big Data is the lack of a machine learning process that scales and finds meaningful features. Humans fill in for the insufficient automation, but the complexity of the tasks outpaces the human mind’s capacity to comprehend the data. Heuristic partition methods may help but still need humans to adjust the parameters. The same problems exist in many other disciplines and technologies that depend on Big Data or Machine Learning. Proposed here is a fractal groupoid-theoretical method that recursively partitions the problem and requires no heuristics or human intervention. It takes two steps. First, make explicit the fundamental causal nature of information in the physical world by encoding it as a causal set. Second, construct a functor F: C C′ on the category of causal sets that morphs causal set C into smaller causal set C′ by partitioning C into a set of invariant groupoid-theoretical blocks. Repeating the construction, there arises a sequence of progressively smaller causal sets C, C′, C″, … The sequence defines a fractal hierarchy of features, with the features being invariant and hence endowed with a physical meaning, and the hierarchy being scale-free and hence ensuring proper scaling at all granularities. Fractals exist in nature nearly everywhere and at all physical scales, and invariants have long been known to be meaningful to us. The theory is also of interest for NP-hard combinatorial problems that can be expressed as a causal set, such as the Traveling Salesman problem. The recursive groupoid partition promoted by functor F works against their combinatorial complexity and appears to allow a low-order polynomial solution. A true test of this property requires special hardware, not yet available. However, as a proof of concept, a suite of sequential, non-heuristic algorithms were developed and used to solve a real-world 120-city problem of TSP on a personal computer. The results are reported.