The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) ...The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) and their subsequent combination into a closed path (the so-called contour algorithm or “onion husk” algorithm). A number of heuristics related to the different stages of the algorithm are considered, and various variants of the algorithm based on these heuristics are analyzed. Sets of randomly generated points of different sizes (from 4 to 90 and from 500 to 10,000) were used to test the algorithms. The numerical results obtained are compared with the results of two well-known combinatorial optimization algorithms, namely the algorithm based on the branch and bound method and the simulated annealing algorithm. .展开更多
The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is h...The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.展开更多
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo...Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.展开更多
In this paper, a hybrid genetic algorithm (GA) is proposed for the traveling salesman problem (TSP) with pickup and delivery (TSPPD). In our algorithm, a novel pheromone-based crossover operator is advanced that...In this paper, a hybrid genetic algorithm (GA) is proposed for the traveling salesman problem (TSP) with pickup and delivery (TSPPD). In our algorithm, a novel pheromone-based crossover operator is advanced that utilizes both local and global information to construct offspring. In addition, a local search procedure is integrated into the GA to accelerate convergence. The proposed GA has been tested on benchmark instances, and the computational results show that it gives better convergence than existing heuristics.展开更多
Multi-bridge machining systems(MBMS) have gained wide applications in industry due to their high production capacity and efficiency. They contain multiple bridge machines working in parallel within their partially ove...Multi-bridge machining systems(MBMS) have gained wide applications in industry due to their high production capacity and efficiency. They contain multiple bridge machines working in parallel within their partially overlapping workspaces.Their scheduling problems can be abstracted into a serial-colored travelling salesman problem in which each salesman has some exclusive cities and some cities shared with its neighbor(s). To solve it, we develop a greedy algorithm that selects a neighboring city satisfying proximity. The algorithm allows a salesman to select randomly its shared cities and runs accordingly many times. It can thus be used to solve job scheduling problems for MBMS. Subsequently, a collision-free scheduling method is proposed to address both job scheduling and collision resolution issues of MBMS. It is an extension of the greedy algorithm by introducing time window constraints and a collision resolution mechanism. Thus, the augmented greedy algorithm can try its best to select stepwise a job for an individual machine such that no time overlaps exist between it and the job sequence of the neighboring machine dealt in the corresponding overlapping workspace; and remove such a time overlap only when it is inevitable. Finally, we conduct a case study of a large triplebridge waterjet cutting system by applying the proposed method.展开更多
The Quantum Approximate Optimization Algorithm(QAOA)is an algorithmic framework for finding approximate solutions to combinatorial optimization problems.It consists of interleaved unitary transformations induced by tw...The Quantum Approximate Optimization Algorithm(QAOA)is an algorithmic framework for finding approximate solutions to combinatorial optimization problems.It consists of interleaved unitary transformations induced by two operators labelled the mixing and problem Hamiltonians.To fit this framework,one needs to transform the original problem into a suitable form and embed it into these two Hamiltonians.In this paper,for the well-known NP-hard Traveling Salesman Problem(TSP),we encode its constraints into the mixing Hamiltonian rather than the conventional approach of adding penalty terms to the problem Hamiltonian.Moreover,we map edges(routes)connecting each pair of cities to qubits,which decreases the search space significantly in comparison to other approaches.As a result,our method can achieve a higher probability for the shortest round-trip route with only half the number of qubits consumed compared to IBM Q’s approach.We argue the formalization approach presented in this paper would lead to a generalized framework for finding,in the context of QAOA,high-quality approximate solutions to NP optimization problems.展开更多
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim...As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.展开更多
Aimed at a multiple traveling salesman problem(MTSP)with multiple depots and closed paths,this paper proposes a k-means clustering donkey and a smuggler algorithm(KDSA).The algorithm first uses the k-means clustering ...Aimed at a multiple traveling salesman problem(MTSP)with multiple depots and closed paths,this paper proposes a k-means clustering donkey and a smuggler algorithm(KDSA).The algorithm first uses the k-means clustering method to divide all cities into several categories based on the center of various samples;the large-scale MTSP is divided into multiple separate traveling salesman problems(TSPs),and the TSP is solved through the DSA.The proposed algorithm adopts a solution strategy of clustering first and then carrying out,which can not only greatly reduce the search space of the algorithm but also make the search space more fully explored so that the optimal solution of the problem can be more quickly obtained.The experimental results from solving several test cases in the TSPLIB database show that compared with other related intelligent algorithms,the K-DSA has good solving performance and computational efficiency in MTSPs of different scales,especially with large-scale MTSP and when the convergence speed is faster;thus,the advantages of this algorithm are more obvious compared to other algorithms.展开更多
In the distribution center, the way of order picking personnel to pick goods has two kinds: single picking and batch picking. Based on the way of the single picking and assumed warehouse model, in order to reduce the ...In the distribution center, the way of order picking personnel to pick goods has two kinds: single picking and batch picking. Based on the way of the single picking and assumed warehouse model, in order to reduce the walking path of order picking, the order picking problem is transformed into the traveling salesman problem in this paper. Based on backtracking algorithm, the order picking path gets optimized. Finally verifing the optimization method under the environment of VC++6.0, order picking path in the warehouse model get optimized, and compared with the traditional order picking walking paths. The results show that in small and medium-sized warehouse, the optimization method proposed in this paper can reduce order picking walking path and improve the work efficiency as well as reduce the time cost.展开更多
The traveling salesman problem (TSP) is a classical optimization problem and it is one of a class of NP- Problem. This paper presents a new method named multiagent approach based genetic algorithm and ant colony sys...The traveling salesman problem (TSP) is a classical optimization problem and it is one of a class of NP- Problem. This paper presents a new method named multiagent approach based genetic algorithm and ant colony system to solve the TSP. Three kinds of agents with different function were designed in the multi-agent architecture proposed by this paper. The first kind of agent is ant colony optimization agent and its function is generating the new solution continuously. The second kind of agent is selection agent, crossover agent and mutation agent, their function is optimizing the current solutions group. The third kind of agent is fast local searching agent and its function is optimizing the best solution from the beginning of the trial. At the end of this paper, the experimental results have shown that the proposed hybrid ap proach has good performance with respect to the quality of solution and the speed of computation.展开更多
In this paper, recent developments of some heuristic algorithms were discussed. The focus was laid on the improvements of ant-cycle (AC) algorithm based on the analysis of the performances of simulated annealing (SA) ...In this paper, recent developments of some heuristic algorithms were discussed. The focus was laid on the improvements of ant-cycle (AC) algorithm based on the analysis of the performances of simulated annealing (SA) and AC for the traveling salesman problem (TSP). The Metropolis rules in SA were applied to AC and turned out an improved AC. The computational results obtained from the case study indicated that the improved AC algorithm has advantages over the sheer SA or unmixed AC.展开更多
The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant...The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively.展开更多
A new local search method for the traveling salesman problem based on an original greedy representation of solution space and neighborhood structure is proposed. First, a partial closed route that only consists of thr...A new local search method for the traveling salesman problem based on an original greedy representation of solution space and neighborhood structure is proposed. First, a partial closed route that only consists of three cities is given; then other cities are added to this route by a greedy procedure successively. Implemented on a personal computer, this algorithm finds optimal solutions for 24 out of 27 standard benchmarks, and outperforms the Full Subpath Ejection Algorithm (F-SEC) proposed by Rego in 1998.展开更多
This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very u...This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture.展开更多
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ...Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.展开更多
Let G = (V, E) be a complete undirected graph with vertex set V, edge set E, and edge weights I(e) satisfying the triangle inequality. The vertex set V is partitioned into clusters V1, V2 ,…, Vk. The clustered tr...Let G = (V, E) be a complete undirected graph with vertex set V, edge set E, and edge weights I(e) satisfying the triangle inequality. The vertex set V is partitioned into clusters V1, V2 ,…, Vk. The clustered traveling salesman problem (CTSP) seeks to compute the shortest Hamiltonian tour that visits all the vertices, in which the vertices of each cluster are visited consecutively. A two-level genetic algorithm (TLGA) was developed for the problem, which favors neither intra-cluster paths nor inter-cluster paths, thus realized integrated evolutionary optimization for both levels of the CTSP. Results show that the algorithm is more effective than known algorithms. A large-scale traveling salesman problem (TSP) can be converted into a CTSP by clustering so that it can then be solved by the algorithm. Test results demonstrate that the clustering TLGA for large TSPs is more effective and efficient than the classical genetic algorithm.展开更多
The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimizat...The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly's smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.展开更多
In this research, we introduce a new heuristic approach using the concept of ant colony optimization (ACO) to extract patterns from the chromosomes generated by previous generations for solving the generalized trave...In this research, we introduce a new heuristic approach using the concept of ant colony optimization (ACO) to extract patterns from the chromosomes generated by previous generations for solving the generalized traveling salesman problem. The proposed heuristic is composed of two phases. In the first phase the ACO technique is adopted to establish an archive consisting of a set of non-overlapping blocks and of a set of remaining cities (nodes) to be visited. The second phase is a block recombination phase where the set of blocks and the rest of cities are combined to form an artificial chromosome. The generated artificial chromosomes (ACs) will then be injected into a standard genetic algorithm (SGA) to speed up the convergence. The proposed method is called "Puzzle-Based Genetic Algorithm" or "p-ACGA". We demonstrate that p-ACGA performs very well on all TSPLIB problems, which have been solved to optimality by other researchers. The proposed approach can prevent the early convergence of the genetic algorithm (GA) and lead the algorithm to explore and exploit the search space by taking advantage of the artificial chromosomes.展开更多
Electrical power cables in tidal turbine farms contribute a significant share to capital expenditure(CAPEX). As a result, the routing of electrical power cables connecting turbines to cable collector hubs must be desi...Electrical power cables in tidal turbine farms contribute a significant share to capital expenditure(CAPEX). As a result, the routing of electrical power cables connecting turbines to cable collector hubs must be designed so as to obtain the least cost configuration.This is referred to as a tidal cable routing problem. This problem possesses several variants depending on the number of cable collector hubs. In this paper, these variants are modeled by employing the approach of the single depot multiple traveling salesman problem(mTSP) and the multiple depot mTSP of operational research for the single and multiple cable collector variants, respectively. The developed optimization models are computationally implemented using MATLAB. In the triple cable collector cable hub variant, an optimal solution is obtained, while good-quality suboptimal solutions are obtained in the double and single cable collector hub variants. In practice,multiple cable collector hubs are expected to be employed as the multiple-hub configurations tend to be more economic than the single-hub configurations.This has been confirmed by this paper for an optimal tidal turbine layout obtained with OpenTidalFarm. Suggestions are presented for future research studies comprising a number of heuristics.展开更多
In this study,we focus mainly on the problem of finding the minimum-length path through a set of circular regions by a fixed-wing unmanned aerial vehicle.Such a problem is referred to as the Dubins traveling salesman ...In this study,we focus mainly on the problem of finding the minimum-length path through a set of circular regions by a fixed-wing unmanned aerial vehicle.Such a problem is referred to as the Dubins traveling salesman problem with neighborhoods(DTSPN).Algorithms developed in the literature for solving DTSPN either are computationally demanding or generate low-quality solutions.To achieve a better trade-off between solution quality and computational cost,an efficient gradient-free descent method is designed.The core idea of the descent method is to decompose DTSPN into a series of subproblems,each of which consists of finding the minimum-length path of a Dubins vehicle from a configuration to another configuration via an intermediate circular region.By analyzing the geometric properties of the subproblems,we use a bisection method to solve the subproblems.As a result,the descent method can efficiently address DTSPN by successively solving a series of subproblems.Finally,several numerical experiments are carried out to demonstrate the descent method in comparison with several existing algorithms.展开更多
文摘The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) and their subsequent combination into a closed path (the so-called contour algorithm or “onion husk” algorithm). A number of heuristics related to the different stages of the algorithm are considered, and various variants of the algorithm based on these heuristics are analyzed. Sets of randomly generated points of different sizes (from 4 to 90 and from 500 to 10,000) were used to test the algorithms. The numerical results obtained are compared with the results of two well-known combinatorial optimization algorithms, namely the algorithm based on the branch and bound method and the simulated annealing algorithm. .
基金the Deanship of Scientific Research,Imam Mohammad Ibn Saud Islamic University(IMSIU),Saudi Arabia,for funding this research work through Grant No.(221412020).
文摘The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.
基金supported by the National Natural Science Foundation of China(60573159)
文摘Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.
文摘In this paper, a hybrid genetic algorithm (GA) is proposed for the traveling salesman problem (TSP) with pickup and delivery (TSPPD). In our algorithm, a novel pheromone-based crossover operator is advanced that utilizes both local and global information to construct offspring. In addition, a local search procedure is integrated into the GA to accelerate convergence. The proposed GA has been tested on benchmark instances, and the computational results show that it gives better convergence than existing heuristics.
基金supported in part by the National Natural Science Foundation of China(61773115,61374069,61374148)the Natural Science Foundation of Jiangsu Province(BK20161427)
文摘Multi-bridge machining systems(MBMS) have gained wide applications in industry due to their high production capacity and efficiency. They contain multiple bridge machines working in parallel within their partially overlapping workspaces.Their scheduling problems can be abstracted into a serial-colored travelling salesman problem in which each salesman has some exclusive cities and some cities shared with its neighbor(s). To solve it, we develop a greedy algorithm that selects a neighboring city satisfying proximity. The algorithm allows a salesman to select randomly its shared cities and runs accordingly many times. It can thus be used to solve job scheduling problems for MBMS. Subsequently, a collision-free scheduling method is proposed to address both job scheduling and collision resolution issues of MBMS. It is an extension of the greedy algorithm by introducing time window constraints and a collision resolution mechanism. Thus, the augmented greedy algorithm can try its best to select stepwise a job for an individual machine such that no time overlaps exist between it and the job sequence of the neighboring machine dealt in the corresponding overlapping workspace; and remove such a time overlap only when it is inevitable. Finally, we conduct a case study of a large triplebridge waterjet cutting system by applying the proposed method.
基金This work is supported by the Natural Science Foundation,China(Grant No.61802002)Natural Science Foundation of Anhui Province,China(Grant No.1708085MF162).
文摘The Quantum Approximate Optimization Algorithm(QAOA)is an algorithmic framework for finding approximate solutions to combinatorial optimization problems.It consists of interleaved unitary transformations induced by two operators labelled the mixing and problem Hamiltonians.To fit this framework,one needs to transform the original problem into a suitable form and embed it into these two Hamiltonians.In this paper,for the well-known NP-hard Traveling Salesman Problem(TSP),we encode its constraints into the mixing Hamiltonian rather than the conventional approach of adding penalty terms to the problem Hamiltonian.Moreover,we map edges(routes)connecting each pair of cities to qubits,which decreases the search space significantly in comparison to other approaches.As a result,our method can achieve a higher probability for the shortest round-trip route with only half the number of qubits consumed compared to IBM Q’s approach.We argue the formalization approach presented in this paper would lead to a generalized framework for finding,in the context of QAOA,high-quality approximate solutions to NP optimization problems.
基金supported by the National Natural Science Foundation of China(61771293)the Key Project of Shangdong Province(2019JZZY010111)。
文摘As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.
基金the Natural Science Basic Research Program of Shaanxi(2021JQ-368).
文摘Aimed at a multiple traveling salesman problem(MTSP)with multiple depots and closed paths,this paper proposes a k-means clustering donkey and a smuggler algorithm(KDSA).The algorithm first uses the k-means clustering method to divide all cities into several categories based on the center of various samples;the large-scale MTSP is divided into multiple separate traveling salesman problems(TSPs),and the TSP is solved through the DSA.The proposed algorithm adopts a solution strategy of clustering first and then carrying out,which can not only greatly reduce the search space of the algorithm but also make the search space more fully explored so that the optimal solution of the problem can be more quickly obtained.The experimental results from solving several test cases in the TSPLIB database show that compared with other related intelligent algorithms,the K-DSA has good solving performance and computational efficiency in MTSPs of different scales,especially with large-scale MTSP and when the convergence speed is faster;thus,the advantages of this algorithm are more obvious compared to other algorithms.
文摘In the distribution center, the way of order picking personnel to pick goods has two kinds: single picking and batch picking. Based on the way of the single picking and assumed warehouse model, in order to reduce the walking path of order picking, the order picking problem is transformed into the traveling salesman problem in this paper. Based on backtracking algorithm, the order picking path gets optimized. Finally verifing the optimization method under the environment of VC++6.0, order picking path in the warehouse model get optimized, and compared with the traditional order picking walking paths. The results show that in small and medium-sized warehouse, the optimization method proposed in this paper can reduce order picking walking path and improve the work efficiency as well as reduce the time cost.
基金Supported by the National Natural Science Foun-dation of China (69973016)
文摘The traveling salesman problem (TSP) is a classical optimization problem and it is one of a class of NP- Problem. This paper presents a new method named multiagent approach based genetic algorithm and ant colony system to solve the TSP. Three kinds of agents with different function were designed in the multi-agent architecture proposed by this paper. The first kind of agent is ant colony optimization agent and its function is generating the new solution continuously. The second kind of agent is selection agent, crossover agent and mutation agent, their function is optimizing the current solutions group. The third kind of agent is fast local searching agent and its function is optimizing the best solution from the beginning of the trial. At the end of this paper, the experimental results have shown that the proposed hybrid ap proach has good performance with respect to the quality of solution and the speed of computation.
文摘In this paper, recent developments of some heuristic algorithms were discussed. The focus was laid on the improvements of ant-cycle (AC) algorithm based on the analysis of the performances of simulated annealing (SA) and AC for the traveling salesman problem (TSP). The Metropolis rules in SA were applied to AC and turned out an improved AC. The computational results obtained from the case study indicated that the improved AC algorithm has advantages over the sheer SA or unmixed AC.
基金supported in part by the National Research Foundation of Korea (NRF-2021H1D3A2A01082705).
文摘The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively.
文摘A new local search method for the traveling salesman problem based on an original greedy representation of solution space and neighborhood structure is proposed. First, a partial closed route that only consists of three cities is given; then other cities are added to this route by a greedy procedure successively. Implemented on a personal computer, this algorithm finds optimal solutions for 24 out of 27 standard benchmarks, and outperforms the Full Subpath Ejection Algorithm (F-SEC) proposed by Rego in 1998.
文摘This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture.
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.
文摘Let G = (V, E) be a complete undirected graph with vertex set V, edge set E, and edge weights I(e) satisfying the triangle inequality. The vertex set V is partitioned into clusters V1, V2 ,…, Vk. The clustered traveling salesman problem (CTSP) seeks to compute the shortest Hamiltonian tour that visits all the vertices, in which the vertices of each cluster are visited consecutively. A two-level genetic algorithm (TLGA) was developed for the problem, which favors neither intra-cluster paths nor inter-cluster paths, thus realized integrated evolutionary optimization for both levels of the CTSP. Results show that the algorithm is more effective than known algorithms. A large-scale traveling salesman problem (TSP) can be converted into a CTSP by clustering so that it can then be solved by the algorithm. Test results demonstrate that the clustering TLGA for large TSPs is more effective and efficient than the classical genetic algorithm.
基金supported by the National Natural Science Foundation of China(Nos.61472159 and 61373051)
文摘The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly's smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.
文摘In this research, we introduce a new heuristic approach using the concept of ant colony optimization (ACO) to extract patterns from the chromosomes generated by previous generations for solving the generalized traveling salesman problem. The proposed heuristic is composed of two phases. In the first phase the ACO technique is adopted to establish an archive consisting of a set of non-overlapping blocks and of a set of remaining cities (nodes) to be visited. The second phase is a block recombination phase where the set of blocks and the rest of cities are combined to form an artificial chromosome. The generated artificial chromosomes (ACs) will then be injected into a standard genetic algorithm (SGA) to speed up the convergence. The proposed method is called "Puzzle-Based Genetic Algorithm" or "p-ACGA". We demonstrate that p-ACGA performs very well on all TSPLIB problems, which have been solved to optimality by other researchers. The proposed approach can prevent the early convergence of the genetic algorithm (GA) and lead the algorithm to explore and exploit the search space by taking advantage of the artificial chromosomes.
基金supported by the funding for the OpTiCA project from the Marie Sklodowska-Curie Actions of the European Union’s H2020-MSCA-IF-EF-RI-2016/under REA grant agreement#[748747]
文摘Electrical power cables in tidal turbine farms contribute a significant share to capital expenditure(CAPEX). As a result, the routing of electrical power cables connecting turbines to cable collector hubs must be designed so as to obtain the least cost configuration.This is referred to as a tidal cable routing problem. This problem possesses several variants depending on the number of cable collector hubs. In this paper, these variants are modeled by employing the approach of the single depot multiple traveling salesman problem(mTSP) and the multiple depot mTSP of operational research for the single and multiple cable collector variants, respectively. The developed optimization models are computationally implemented using MATLAB. In the triple cable collector cable hub variant, an optimal solution is obtained, while good-quality suboptimal solutions are obtained in the double and single cable collector hub variants. In practice,multiple cable collector hubs are expected to be employed as the multiple-hub configurations tend to be more economic than the single-hub configurations.This has been confirmed by this paper for an optimal tidal turbine layout obtained with OpenTidalFarm. Suggestions are presented for future research studies comprising a number of heuristics.
基金Project supported by the National Natural Science Foundation of China(Nos.61903331 and 61703366)the Fundamental Research Funds for the Central Universities,China(No.2019FZA4024)。
文摘In this study,we focus mainly on the problem of finding the minimum-length path through a set of circular regions by a fixed-wing unmanned aerial vehicle.Such a problem is referred to as the Dubins traveling salesman problem with neighborhoods(DTSPN).Algorithms developed in the literature for solving DTSPN either are computationally demanding or generate low-quality solutions.To achieve a better trade-off between solution quality and computational cost,an efficient gradient-free descent method is designed.The core idea of the descent method is to decompose DTSPN into a series of subproblems,each of which consists of finding the minimum-length path of a Dubins vehicle from a configuration to another configuration via an intermediate circular region.By analyzing the geometric properties of the subproblems,we use a bisection method to solve the subproblems.As a result,the descent method can efficiently address DTSPN by successively solving a series of subproblems.Finally,several numerical experiments are carried out to demonstrate the descent method in comparison with several existing algorithms.