期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tree clusters migration into alpine tundra,Siberia
1
作者 KHARUK Viacheslav I. PETROV II'ya A. +3 位作者 IM Sergei T. GOLYUKOV Alexey S. DVINSKAYA Maria L. SHUSHPANOV Alexander S. 《Journal of Mountain Science》 SCIE CSCD 2022年第12期3426-3440,共15页
We hypothesize that in mountain windy habitat trees formed clusters(hedges)as adaptive structures for seedlings’rooting,survival,and tress’upslope migration.We studied hedges formed by Siberian pine(Pinus sibirica d... We hypothesize that in mountain windy habitat trees formed clusters(hedges)as adaptive structures for seedlings’rooting,survival,and tress’upslope migration.We studied hedges formed by Siberian pine(Pinus sibirica du Tour)and larch(Larix sibirica Ledeb.)within the treeline ecotone in southern Siberian Mountains,investigated hedges formation,evolution,habitat amelioration,and analyzed tree’s growth index(GI)dependence on the eco-climate variables(air temperature,precipitation,soil moisture,wind speed)and relief features(elevation,aspect,slope steepness,and terrain curvature).We conducted a ground survey,measured biometrical parameters of trees and hedges,determined species composition and tree physiognomy,soil types and nutrient contents,and sampled wood cores and applied dendrochronology for trees’GI analysis.With high-resolution satellite scenes for hedge detection and upslope migration,we found that winter winds and soil moisture are the main constraints of trees’settlement and growth.Hedge formation always links with wind-sheltered microtopography features(boulders,local depressions or felled trees).Once the first tree is established,a positive feedback is aroused that facilitates seedling rooting and in-hedge habitat amelioration.Trees form a streamlined dense“common crown”that mitigates adverse winter wind influence.Hedges always orient along the prevailing winds,and trees’uphill migration occurs by seedlings establishment within the leeward hedge side.Hedge growth facilitates soil formation and fertilization.The concentration of nutrients(K,P,N and S)within hedges exceeds the background by 1.5-5.5 times.Hedge extension leads to increased snow accumulation that mitigates the influence of desiccation and snow abrasion and mitigates seasonal water stress.In the extremely harsh windy habitat,inhedge trees present in mat,prostrate or krummholz forms.With warming,tree stems and even twigs turn upright.Notably that GI dependence on the wind speed is insignificant until prostrated trees get turning upright.Since that,the negative correlation between GI and wind speed is arisen with subsequent decrease since hedges form streamlined crown.Hedge growth also leads to a“phytofield”formation(i.e.,grasses,lichen,moss and small bushes growth)around the hedges that,in its turn,encourages seedling rooting which is about triple more efficient than outside the phytofield.Larch,in comparison with Siberian pine,is less often formed hedges.GI of both species is stimulated by warmer air temperature in the beginning of the growth season.Meanwhile,larch GI has stronger response to elevated temperatures and less dependent on soil moisture.This indicates larch is a potential substitute of Siberian pine in a warmer and dryer climate.Hedges in warming climate evolve into closed stands due to both in-hedge tree growth and filling gaps between hedges by different tree species. 展开更多
关键词 treeLINE TIMBERLINE HEDGES tree migration Siberian pine LARCH tree growth Siberian mountain forests Wind stress Moisture stress
下载PDF
Morphological Response of Jack Pine to the Interactive Effects of Carbon Dioxide, Soil Temperature and Photoperiod
2
作者 Md. Shah Newaz Qing-Lai Dang Rongzhou Man 《American Journal of Plant Sciences》 2016年第6期879-893,共15页
Responding to the predicted shift in climate envelope jack pine, (Pinus banksiana Lamb.) might migrate 10° northward between 2071 and 2100 and will be exposed to a different photoperiod regime. Successful migrati... Responding to the predicted shift in climate envelope jack pine, (Pinus banksiana Lamb.) might migrate 10° northward between 2071 and 2100 and will be exposed to a different photoperiod regime. Successful migration of the species might depend on the initial acclimating capability to the conditions of new location. The impacts of elevated carbon dioxide concentration [CO<sub>2</sub>], soil temperature and photoperiod on the phenological traits, growth and biomass responses in jack pine seedlings were investigated. Seedlings were grown in greenhouses under two [CO<sub>2</sub>] (400 and 950 μmol&bull;mol<sup>-1</sup>), two soil temperatures (ambient soil temperature at seed origin and 5°C warmer) and three photoperiod regimes (photoperiods at seed origin, 5° north of the seed origin and 10° north of the seed origin). Budburst and bud setting time were recorded and the seedling height (Ht), root collar diameter (RCD), root biomass, stem biomass and leaf biomass were measured after six months of treatment. It was observed that under elevated [CO<sub>2</sub>], ambient T<sub>soil</sub> and photoperiods associated with 10° northward migrations budburstis advanced by 10 days. Photoperiods toward north significantly prolonged the bud setting time. However, tri-factor interactive effect on bud set was not statistically significant. Elevated [CO<sub>2</sub>] significantly (P < 0.05) increased the RCD, volume of the seedlings and total biomass and longer growing season photoperiods towards north significantly increased the seedling heights. Though elevated [CO<sub>2</sub>] significantly increased the projected leaf area, it had no significant effect on specific leaf area. Elevated [CO<sub>2</sub>] significantly reduced the shoot to root ratio, which indicated higher biomass allocation in roots under elevated [CO<sub>2</sub>]. However, all these growth and biomass responses were statistically insignificant under tri-factor interactive effects. The results suggest that climate change induced northward migration will not affect the growth of jack pine. However, a long distance migration (e.g. 10° north) will expose the species to late-spring frost damage. 展开更多
关键词 tree Seedling Physiology Plant Ecophysiology tree migration Climate Change Boreal Forest
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部