To reduce the time required to complete the regeneration process of erasure codes, we propose a Tree-structured Parallel Regeneration (TPR) scheme for multiple data losses in distributed storage systems. Under the sch...To reduce the time required to complete the regeneration process of erasure codes, we propose a Tree-structured Parallel Regeneration (TPR) scheme for multiple data losses in distributed storage systems. Under the scheme, two algorithms are proposed for the construction of multiple regeneration trees, namely the edge-disjoint algorithm and edge-sharing algorithm. The edge-disjoint algorithm constructs multiple independent trees, and is simple and appropriate for environments where newcomers and their providers are distributed over a large area and have few intersections. The edge-sharing algorithm constructs multiple trees that compete to utilize the bandwidth, and make a better utilization of the bandwidth, although it needs to measure the available band-width and deal with the bandwidth changes; it is therefore difficult to implement in practical systems. The parallel regeneration for multiple data losses of TPR primarily includes two optimizations: firstly, transferring the data through the bandwidth optimized-paths in a pipe-line manner; secondly, executing data regeneration over multiple trees in parallel. To evaluate the proposal, we implement an event-based simulator and make a detailed comparison with some popular regeneration methods. The quantitative comparison results show that the use of TPR employing either the edge-disjoint algorithm or edge-sharing algorithm reduces the regeneration time significantly.展开更多
Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro prol...Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews,a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research.We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38,and added nerve growth factor(100 μg/L) to the culture medium.Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls.After 3 days,fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells.These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.展开更多
基金supported by the National Grand Fundamental Research of China (973 Program) under Grant No. 2011CB302601the National High Technology Research and Development of China (863 Program) under GrantNo. 2013AA01A213+2 种基金the National Natural Science Foundation of China under Grant No. 60873215the Natural Science Foundation for Distinguished Young Scholars of Hunan Province under Grant No. S2010J5050Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20124307110015
文摘To reduce the time required to complete the regeneration process of erasure codes, we propose a Tree-structured Parallel Regeneration (TPR) scheme for multiple data losses in distributed storage systems. Under the scheme, two algorithms are proposed for the construction of multiple regeneration trees, namely the edge-disjoint algorithm and edge-sharing algorithm. The edge-disjoint algorithm constructs multiple independent trees, and is simple and appropriate for environments where newcomers and their providers are distributed over a large area and have few intersections. The edge-sharing algorithm constructs multiple trees that compete to utilize the bandwidth, and make a better utilization of the bandwidth, although it needs to measure the available band-width and deal with the bandwidth changes; it is therefore difficult to implement in practical systems. The parallel regeneration for multiple data losses of TPR primarily includes two optimizations: firstly, transferring the data through the bandwidth optimized-paths in a pipe-line manner; secondly, executing data regeneration over multiple trees in parallel. To evaluate the proposal, we implement an event-based simulator and make a detailed comparison with some popular regeneration methods. The quantitative comparison results show that the use of TPR employing either the edge-disjoint algorithm or edge-sharing algorithm reduces the regeneration time significantly.
基金supported by a grant from the National Key Technology Research and Development Program of the Ministry of Science and Technology of China,No.2014BAI01B00
文摘Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews,a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research.We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38,and added nerve growth factor(100 μg/L) to the culture medium.Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls.After 3 days,fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells.These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.