Many black box functions and datasets have regions of different variability. Models such as the Gaussian process may fall short in giving the best representation of these complex functions. One successful approach for...Many black box functions and datasets have regions of different variability. Models such as the Gaussian process may fall short in giving the best representation of these complex functions. One successful approach for modeling this type of nonstationarity is the Treed Gaussian process <span style="font-family:Verdana;">[1]</span><span></span><span><span></span></span><span style="font-family:Verdana;">, which extended the Gaussian process by dividing the input space into different regions using a binary tree algorithm. Each region became its own Gaussian process. This iterative inference process formed many different trees and thus, many different Gaussian processes. In the end these were combined to get a posterior predictive distribution at each point. The idea was that when the iterations were combined, smoothing would take place for the surface of the predicted points near tree boundaries. We introduce the Improved Treed Gaussian process, which divides the input space into a single main binary tree where the different tree regions have different variability. The parameters for the Gaussian process for each tree region are then determined. These parameters are then smoothed at the region boundaries. This smoothing leads to a set of parameters for each point in the input space that specify the covariance matrix used to predict the point. The advantage is that the prediction and actual errors are estimated better since the standard deviation and range parameters of each point are related to the variation of the region it is in. Further, smoothing between regions is better since each point prediction uses its parameters over the whole input space. Examples are given in this paper which show these advantages for lower-dimensional problems.</span>展开更多
The black box functions found in computer experiments often result in multimodal optimization programs. Optimization that focuses on a single best optimum may not achieve the goal of getting the best answer for the pu...The black box functions found in computer experiments often result in multimodal optimization programs. Optimization that focuses on a single best optimum may not achieve the goal of getting the best answer for the purposes of the experiment. This paper builds upon an algorithm introduced in [1] that is successful for finding multiple optima within the input space of the objective function. Here we introduce an alternative cluster search algorithm for finding these optima, making use of clustering. The cluster search algorithm has several advantages over the earlier algorithm. It gives a forward view of the optima that are present in the input space so the user has a preview of what to expect as the optimization process continues. It employs pattern search, in many instances, closer to the minimum’s location in input space, saving on simulator point computations. At termination, this algorithm does not need additional verification that a minimum is a duplicate of a previously found minimum, which also saves on simulator point computations. Finally, it finds minima that can be “hidden” by close larger minima.展开更多
Black box functions, such as computer experiments, often have multiple optima over the input space of the objective function. While traditional optimization routines focus on finding a single best optimum, we sometime...Black box functions, such as computer experiments, often have multiple optima over the input space of the objective function. While traditional optimization routines focus on finding a single best optimum, we sometimes want to consider the relative merits of multiple optima. First we need a search algorithm that can identify multiple local optima. Then we consider that blindly choosing the global optimum may not always be best. In some cases, the global optimum may not be robust to small deviations in the inputs, which could lead to output values far from the optimum. In those cases, it would be better to choose a slightly less extreme optimum that allows for input deviation with small change in the output;such an optimum would be considered more robust. We use a Bayesian decision theoretic approach to develop a utility function for selecting among multiple optima.展开更多
文摘Many black box functions and datasets have regions of different variability. Models such as the Gaussian process may fall short in giving the best representation of these complex functions. One successful approach for modeling this type of nonstationarity is the Treed Gaussian process <span style="font-family:Verdana;">[1]</span><span></span><span><span></span></span><span style="font-family:Verdana;">, which extended the Gaussian process by dividing the input space into different regions using a binary tree algorithm. Each region became its own Gaussian process. This iterative inference process formed many different trees and thus, many different Gaussian processes. In the end these were combined to get a posterior predictive distribution at each point. The idea was that when the iterations were combined, smoothing would take place for the surface of the predicted points near tree boundaries. We introduce the Improved Treed Gaussian process, which divides the input space into a single main binary tree where the different tree regions have different variability. The parameters for the Gaussian process for each tree region are then determined. These parameters are then smoothed at the region boundaries. This smoothing leads to a set of parameters for each point in the input space that specify the covariance matrix used to predict the point. The advantage is that the prediction and actual errors are estimated better since the standard deviation and range parameters of each point are related to the variation of the region it is in. Further, smoothing between regions is better since each point prediction uses its parameters over the whole input space. Examples are given in this paper which show these advantages for lower-dimensional problems.</span>
文摘The black box functions found in computer experiments often result in multimodal optimization programs. Optimization that focuses on a single best optimum may not achieve the goal of getting the best answer for the purposes of the experiment. This paper builds upon an algorithm introduced in [1] that is successful for finding multiple optima within the input space of the objective function. Here we introduce an alternative cluster search algorithm for finding these optima, making use of clustering. The cluster search algorithm has several advantages over the earlier algorithm. It gives a forward view of the optima that are present in the input space so the user has a preview of what to expect as the optimization process continues. It employs pattern search, in many instances, closer to the minimum’s location in input space, saving on simulator point computations. At termination, this algorithm does not need additional verification that a minimum is a duplicate of a previously found minimum, which also saves on simulator point computations. Finally, it finds minima that can be “hidden” by close larger minima.
文摘Black box functions, such as computer experiments, often have multiple optima over the input space of the objective function. While traditional optimization routines focus on finding a single best optimum, we sometimes want to consider the relative merits of multiple optima. First we need a search algorithm that can identify multiple local optima. Then we consider that blindly choosing the global optimum may not always be best. In some cases, the global optimum may not be robust to small deviations in the inputs, which could lead to output values far from the optimum. In those cases, it would be better to choose a slightly less extreme optimum that allows for input deviation with small change in the output;such an optimum would be considered more robust. We use a Bayesian decision theoretic approach to develop a utility function for selecting among multiple optima.