Trellis coded modulation (TCM) is a scheme that enhances the error performance without extra power not bandwidth. This paper presents a modified Super-Orthogonal Trellis-Coded Spatial Modulation (SOTC-SM) based on a c...Trellis coded modulation (TCM) is a scheme that enhances the error performance without extra power not bandwidth. This paper presents a modified Super-Orthogonal Trellis-Coded Spatial Modulation (SOTC-SM) based on a cyclic structure of the Space Time Coding. The developed code benefits from expanded codebook of the Space Time Block Coded Spatial Modulation (STBC-SM) to enhance the coding gain. The set-partitioning and the code design based on the expanded codebook was given for codes with rate of 2 and 3 bps and can be easily extended to higher rates. The Bit-Error Rate (BER) performance of the proposed scheme was evaluated via computer simulation. It was shown that the proposed scheme outperforms the SOTC-SM performance for the same number of transmit antennas.展开更多
A new non-binary decoding method, which is called Yaletharatalhussein decoding algorithm, is designed and implemented for decoding non-binary convolutional codes which is based on the trellis diagram representing the ...A new non-binary decoding method, which is called Yaletharatalhussein decoding algorithm, is designed and implemented for decoding non-binary convolutional codes which is based on the trellis diagram representing the convolutional encoder. Yaletharatalhussein decoding algorithm outperforms the Viterbi algorithm and other algorithms in its simplicity, very small computational complexity, decoding reliability for high states TCM codes that suitable for Fourth-Generation (4G), decreasing errors with increasing word length, and easy to implement with real-time applications. The proposed Yaletharatalhussein decoding algorithm deals with non-binary error control coding of the convolutional and TCM codes. Convolutional codes differ from block codes in that a block code takes a fixed message length and encodes it, whereas a convolutional code can encode a continuous stream of data, and a hard-decision decoding can easily be realized using the Yaletharatalhussein algorithm. The idea of non-binary codes has been extended for symbols defined over rings of integers, which outperform binary codes with only a small increase in decoding complexity. The simulation results show that the performance of the nonbinary TCM-based Yaletharatalhussein algorithm outperforms the binary and non-binary decoding methods.展开更多
In this paper, a novel multiple trellis coded orthogonal transmit scheme is proposed to exploit transmit diversity in fading channels. In this scheme, a unique vector from a set of orthogonal vectors is assigned to ea...In this paper, a novel multiple trellis coded orthogonal transmit scheme is proposed to exploit transmit diversity in fading channels. In this scheme, a unique vector from a set of orthogonal vectors is assigned to each transmit antenna. Each of the output symbols from the multiple trellis encoder is multiplied with one of these orthogonal vectors and transmitted from corresponding transmit antennas. By correlating with corresponding orthogonal vectors, the receiver separates symbols transmitted from different transmit antennas. This scheme can be adopted in coherent/differential systems with any number of transmit antennas. It is shown that the proposed scheme encompasses the conventional trellis coded unitary space-time modulation based on the optimal cyclic group codes as a special case. We also propose two better designs over the conventional trellis coded unitary space-time modulation. The first design uses 8 Phase Shift Keying (8-PSK) constellations instead of 16 Phase Shift Keying (16-PSK) constellations in the conventional trellis coded unitary space-time modulation. As a result, the product distance of this new design is much larger than that of the conventional trellis coded unitary space-time modulation. The second design introduces constellations with multiple levels of amplitudes into the design of the multiple trellis coded orthogonal transmit scheme. For both designs, simulations show that multiple trellis coded orthogonal transmit schemes can achieve better performance than the conventional trellis coded unitarv space-time schemes.展开更多
信道带宽窄、强多途、强噪声干扰一直是水下信息高速、可靠传输的主要障碍,文中提出用网格编码调制技术(trellis-coded modulation,TCM)与正交频分复用技术(orthogonal frequency division multiplexing,OFDM)相结合的传输体制可有效解...信道带宽窄、强多途、强噪声干扰一直是水下信息高速、可靠传输的主要障碍,文中提出用网格编码调制技术(trellis-coded modulation,TCM)与正交频分复用技术(orthogonal frequency division multiplexing,OFDM)相结合的传输体制可有效解决水下高速数据传输的带宽效率和可靠性问题。详细介绍了TCM、TCM-8PSK的原理及在基于OFDM的水声通信系统中的应用,理论分析和计算机仿真结果表明,使用该传输体制的水声通信系统能在不损失数据速率也不增加带宽的情况下能使编码增益提高3 dB左右,水声通信系统的性能得到明显改善。展开更多
A novel kind of multidimension symbol/sequence trellis coded modulation (TCM) based on TCM of lower coding rate has been constructed. The redundancy of this new kind of TCM is provided not only by the modulated symbo...A novel kind of multidimension symbol/sequence trellis coded modulation (TCM) based on TCM of lower coding rate has been constructed. The redundancy of this new kind of TCM is provided not only by the modulated symbol sequence but also by the PN sequences for spreading spectrum as well. The performance of direct sequence spread spectrum multiple access (DS/SSMA) system with this symbol/sequence TCM over flat Rayleigh fading channel has been investigated by theoretical analysis and numerical simulation. The results obtained in this research demonstrate the performance improvements of this system in comparison with that of the DS/SSMA system with conventional TCM under the same conditions.展开更多
文摘Trellis coded modulation (TCM) is a scheme that enhances the error performance without extra power not bandwidth. This paper presents a modified Super-Orthogonal Trellis-Coded Spatial Modulation (SOTC-SM) based on a cyclic structure of the Space Time Coding. The developed code benefits from expanded codebook of the Space Time Block Coded Spatial Modulation (STBC-SM) to enhance the coding gain. The set-partitioning and the code design based on the expanded codebook was given for codes with rate of 2 and 3 bps and can be easily extended to higher rates. The Bit-Error Rate (BER) performance of the proposed scheme was evaluated via computer simulation. It was shown that the proposed scheme outperforms the SOTC-SM performance for the same number of transmit antennas.
文摘A new non-binary decoding method, which is called Yaletharatalhussein decoding algorithm, is designed and implemented for decoding non-binary convolutional codes which is based on the trellis diagram representing the convolutional encoder. Yaletharatalhussein decoding algorithm outperforms the Viterbi algorithm and other algorithms in its simplicity, very small computational complexity, decoding reliability for high states TCM codes that suitable for Fourth-Generation (4G), decreasing errors with increasing word length, and easy to implement with real-time applications. The proposed Yaletharatalhussein decoding algorithm deals with non-binary error control coding of the convolutional and TCM codes. Convolutional codes differ from block codes in that a block code takes a fixed message length and encodes it, whereas a convolutional code can encode a continuous stream of data, and a hard-decision decoding can easily be realized using the Yaletharatalhussein algorithm. The idea of non-binary codes has been extended for symbols defined over rings of integers, which outperform binary codes with only a small increase in decoding complexity. The simulation results show that the performance of the nonbinary TCM-based Yaletharatalhussein algorithm outperforms the binary and non-binary decoding methods.
基金Supported by the National Natural Science Foundation of China(No.60390540).
文摘In this paper, a novel multiple trellis coded orthogonal transmit scheme is proposed to exploit transmit diversity in fading channels. In this scheme, a unique vector from a set of orthogonal vectors is assigned to each transmit antenna. Each of the output symbols from the multiple trellis encoder is multiplied with one of these orthogonal vectors and transmitted from corresponding transmit antennas. By correlating with corresponding orthogonal vectors, the receiver separates symbols transmitted from different transmit antennas. This scheme can be adopted in coherent/differential systems with any number of transmit antennas. It is shown that the proposed scheme encompasses the conventional trellis coded unitary space-time modulation based on the optimal cyclic group codes as a special case. We also propose two better designs over the conventional trellis coded unitary space-time modulation. The first design uses 8 Phase Shift Keying (8-PSK) constellations instead of 16 Phase Shift Keying (16-PSK) constellations in the conventional trellis coded unitary space-time modulation. As a result, the product distance of this new design is much larger than that of the conventional trellis coded unitary space-time modulation. The second design introduces constellations with multiple levels of amplitudes into the design of the multiple trellis coded orthogonal transmit scheme. For both designs, simulations show that multiple trellis coded orthogonal transmit schemes can achieve better performance than the conventional trellis coded unitarv space-time schemes.
文摘A novel kind of multidimension symbol/sequence trellis coded modulation (TCM) based on TCM of lower coding rate has been constructed. The redundancy of this new kind of TCM is provided not only by the modulated symbol sequence but also by the PN sequences for spreading spectrum as well. The performance of direct sequence spread spectrum multiple access (DS/SSMA) system with this symbol/sequence TCM over flat Rayleigh fading channel has been investigated by theoretical analysis and numerical simulation. The results obtained in this research demonstrate the performance improvements of this system in comparison with that of the DS/SSMA system with conventional TCM under the same conditions.