A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equa...A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation, generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.展开更多
As an improved version of trial equation method, a new trial equation method is proposed. Using this method, abundant new exact traveling wave solutions to a high-order KdV-type equation are obtained.
Using trial equation method, abundant exact envelope traveling wave solutions of high-order dispersive cubic-quintic nonlinear Schr6dinger equation, which include envelope soliton solutions, triangular function envelo...Using trial equation method, abundant exact envelope traveling wave solutions of high-order dispersive cubic-quintic nonlinear Schr6dinger equation, which include envelope soliton solutions, triangular function envelope solutions, and Jacobian elliptic function envelope solutions, are obtained. To our knowledge, all of these results are new. In particular, our proposed method is very simple and can be applied to a lot of similar equations.展开更多
In the paper,we try to study the mechanism of the existence of Gaussian waves in high degree logarithmic nonlinear wave motions.We first construct two model equations which include the high order dispersion and a seco...In the paper,we try to study the mechanism of the existence of Gaussian waves in high degree logarithmic nonlinear wave motions.We first construct two model equations which include the high order dispersion and a second degree logarithmic nonlinearity.And then we prove that the Gaussian waves can exist for high degree logarithmic nonlinear wave equations if the balance between the dispersion and logarithmic nonlinearity is kept.Our mathematical tool is the logarithmic trial equation method.展开更多
文摘A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation, generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.
文摘As an improved version of trial equation method, a new trial equation method is proposed. Using this method, abundant new exact traveling wave solutions to a high-order KdV-type equation are obtained.
文摘Using trial equation method, abundant exact envelope traveling wave solutions of high-order dispersive cubic-quintic nonlinear Schr6dinger equation, which include envelope soliton solutions, triangular function envelope solutions, and Jacobian elliptic function envelope solutions, are obtained. To our knowledge, all of these results are new. In particular, our proposed method is very simple and can be applied to a lot of similar equations.
文摘In the paper,we try to study the mechanism of the existence of Gaussian waves in high degree logarithmic nonlinear wave motions.We first construct two model equations which include the high order dispersion and a second degree logarithmic nonlinearity.And then we prove that the Gaussian waves can exist for high degree logarithmic nonlinear wave equations if the balance between the dispersion and logarithmic nonlinearity is kept.Our mathematical tool is the logarithmic trial equation method.