On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these meth...On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these methods, the transverse displacement is approximated by conforming (bi)linear macroelements or (bi)quadratic elements, and the rotation by conforming (bi)linear elements. The shear stress can be locally computed from transverse displacement and rotation. Uniform in plate thickness, optimal error bounds are obtained for the transverse displacement, rotation, and shear stress in their natural norms. Numerical results are presented to illustrate the theoretical results.展开更多
Flange earrings of strong anisotropic sheet metals in deep-drawing process are numerically analyzed by the elastic-plastic large deformation finite element formulation based on a discrete Kirchhoff triangle plate shel...Flange earrings of strong anisotropic sheet metals in deep-drawing process are numerically analyzed by the elastic-plastic large deformation finite element formulation based on a discrete Kirchhoff triangle plate shell element model. A Barlat-Lian anisotropic yield function and a quasi-flow corner theory are used in the present formulation. The numerical results are compared with the experimental ones of cylindrical cup drawing process. The focus of the present researches is on the numerical analysis and the constraining scheme of the flange earring of circular sheets with strong anisotropy in square cup drawing process.展开更多
基金supported by NSFC(11571266,91430106,11171168,11071132)NSFC-RGC(China-Hong Kong)(11661161017)
文摘On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these methods, the transverse displacement is approximated by conforming (bi)linear macroelements or (bi)quadratic elements, and the rotation by conforming (bi)linear elements. The shear stress can be locally computed from transverse displacement and rotation. Uniform in plate thickness, optimal error bounds are obtained for the transverse displacement, rotation, and shear stress in their natural norms. Numerical results are presented to illustrate the theoretical results.
基金The project supported by the National Natural Science Foundation of China (19832020)Provincial Natural Science Foundation of Jilin, China (200000519)
文摘Flange earrings of strong anisotropic sheet metals in deep-drawing process are numerically analyzed by the elastic-plastic large deformation finite element formulation based on a discrete Kirchhoff triangle plate shell element model. A Barlat-Lian anisotropic yield function and a quasi-flow corner theory are used in the present formulation. The numerical results are compared with the experimental ones of cylindrical cup drawing process. The focus of the present researches is on the numerical analysis and the constraining scheme of the flange earring of circular sheets with strong anisotropy in square cup drawing process.