In computer aided geometric design (CAGD), B′ezier-like bases receive more andmore considerations as new modeling tools in recent years. But those existing B′ezier-like basesare all defined over the rectangular do...In computer aided geometric design (CAGD), B′ezier-like bases receive more andmore considerations as new modeling tools in recent years. But those existing B′ezier-like basesare all defined over the rectangular domain. In this paper, we extend the algebraic trigono-metric B′ezier-like basis of order 4 to the triangular domain. The new basis functions definedover the triangular domain are proved to fulfill non-negativity, partition of unity, symmetry,boundary representation, linear independence and so on. We also prove some properties of thecorresponding B′ezier-like surfaces. Finally, some applications of the proposed basis are shown.展开更多
An application of techniques is presented to construct G ̄1 smooth surfaces by using acombination of the rectangular and triangular Bezier patches of degree as low as possible. TheG ̄1 smooth surfaces have the local p...An application of techniques is presented to construct G ̄1 smooth surfaces by using acombination of the rectangular and triangular Bezier patches of degree as low as possible. TheG ̄1 smooth surfaces have the local property and interpolate the given data and inherit thetopology imposed by the given space convex quadrilateral partition and triangulation. The papergeneralizes current approaches for assembling of rectangular and triangular patches.展开更多
基金Supported by the National Natural Science Foundation of China( 60933008,60970079)
文摘In computer aided geometric design (CAGD), B′ezier-like bases receive more andmore considerations as new modeling tools in recent years. But those existing B′ezier-like basesare all defined over the rectangular domain. In this paper, we extend the algebraic trigono-metric B′ezier-like basis of order 4 to the triangular domain. The new basis functions definedover the triangular domain are proved to fulfill non-negativity, partition of unity, symmetry,boundary representation, linear independence and so on. We also prove some properties of thecorresponding B′ezier-like surfaces. Finally, some applications of the proposed basis are shown.
文摘An application of techniques is presented to construct G ̄1 smooth surfaces by using acombination of the rectangular and triangular Bezier patches of degree as low as possible. TheG ̄1 smooth surfaces have the local property and interpolate the given data and inherit thetopology imposed by the given space convex quadrilateral partition and triangulation. The papergeneralizes current approaches for assembling of rectangular and triangular patches.