On the basis of understanding the principle of rotary triboelectrostatic separation, dynamic analysis of charged fly ash particles aimed at determining the key factors and separation experiments to improve decarboniza...On the basis of understanding the principle of rotary triboelectrostatic separation, dynamic analysis of charged fly ash particles aimed at determining the key factors and separation experiments to improve decarbonization efficiency had been carried out Variables of electrode plate voltage and corrected wind speed are the key factors which affect the decarbonization efficiency on the separation of fly ash, The results of separation experiments show that:(1) With the plate voltage increasing, the efficiency of decarbonization continuously rises and in its selected range, the optimal voltage level is 45 KV;(2) The corrected wind speed can impact the efficiency of decarbonization significantly: with the speed increasing, the efficiency of decarbonization shows a trend of first decline, then increase and decrease again, and in its selected range, the optimal speed is 2.0 m/s. This study is of significance for the improvement of rotary triboelectrostatic separation performance and its decarbonization separation efficiency.展开更多
This study was performed to investigate the feasibility of applying a Rotary Triboelectrostatic Separator(RTS) to the beneficiation of Eshidiya phosphate minerals.RTS separation tests were carried out on phosphatic ...This study was performed to investigate the feasibility of applying a Rotary Triboelectrostatic Separator(RTS) to the beneficiation of Eshidiya phosphate minerals.RTS separation tests were carried out on phosphatic bed A_1,phosphatic bed A_3 and slime samples.The bed A_1 and slime samples were tested without desliming.Two sets of tests were performed using the A_3 sample: one was performed without desliming and the other with the A_3 sample deslimed.RTS separation tests as initially performed on the bed A_1 and slime samples gave products that had essentially the same P_2O_5 content.This indicated that adsorbed clay particles on the phosphate surface are responsible for the poor separation of un-deslimed phosphates.Better triboelectrostatic separation was observed with the undeslimed A_3 phosphate sample;these tests resulted in a highest product grade of 26%P_2O_5.The deslimed A_3 sample showed far more effective separation than the undeslimed A_3 one.In fact,a concentrate of 34%P_2O_5 was obtained from the triboelectrcstatic separation of deslimed A_3.The results indicate that with deslimed A_3 P_2O_5 recovery was about 65%for a concentrate of 28%P_2O_5 and about 45%for a concentrate of 30%P_2O_5.These results clearly show the importance of desliming for effective beneficiation of phosphate by the RTS.A more efficient separation can be expected from optimized operating conditions and circuit configuration.展开更多
At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the res...At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the results of the research on producing low ash (<2%) coal with triboelectrostatic separator used for producing high-grade active carbon. The test is conducted in bench-scale system, whose capacity is 30~100 kg/h. The results indicate that: 1) the ash content of clean coal increases with the increase of solid content of feedstock, on the contrary, the yield of clean coal is declining; 2) a high velocity may result in a good separation efficiency; 3) for the same solid content, the reunion caused by intermolecular force makes the separation efficiency drop down when the ultra-fine coal is separated; 4) the separation efficiency is improved with the increase of electric field intensity, but there is a good optimized match between the electric field intensity and yield of clean coal; 5) a low rank coal is easy-to-wash in triboelectrostatic separation process; 6) the yield of clean coal can be enhanced and the ash decreased through adapting optimized conditions according to various coals.展开更多
The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysi...The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysis of chemical and mineral composition of fly ash in Xinwen power plant. The dielectric constant and charge-mass ratio of carbon and ash of fly ash are tested. Combined with the experimental study on rotary triboelectrostatic separation, the charged characteristic of fly ash particles with different size is gained. The results show that the dielectric constant of fly ash with different grain size decreased with the decrease of particle size, which lead to the poor electrical conductivity, Thus it can be seen that par- ticle size plays a leading role in conductivity, The charge of carbon and ash with each size increased with the decreased of particle size; and the charge-mass ratio between carbon and ash with the same size lar- ger with the decrease of size, which indicated that the finer particle size, the more favorable for triboelec- trification separation. In the same conditions, the best decarburization effect is realized when the particle size ranges from 0.038 to 0.074 ram, whose decarbonization rate and efficiency index reached 38.93% and 120.83% respectively.展开更多
Chemical conditioning was used to modify the triboelectrification of coal and mineral particles.The chemicals tested included starch,lignin,kerosene,ethanol,acetic acid,salicylic acid,sodium oleate,Sodium Hexametaphos...Chemical conditioning was used to modify the triboelectrification of coal and mineral particles.The chemicals tested included starch,lignin,kerosene,ethanol,acetic acid,salicylic acid,sodium oleate,Sodium Hexametaphosphate(SH),sodium silicate, Sodium Dodecylbenzenesulfonate(SDBS),Sodium Bicarbonate(SB) and ammonia.A high-speed,dry mixing method was employed.The charge-to-mass ratio of the coal and mineral samples,both untreated and treated,was tested using a Faraday cup. Dielectric constants were determined by measuring capacitance.It is found that the selectivity of the additives toward coal or minerals is not consistent.Salicylic acid is the optimal additive to enhance the triboelectrification performance of coal samples.Starch, lignin and sodium oleate are suitable for removal of pyrite.SH,sodium silicate,SDBS,SB and ammonia are suitable additives for the removal of ash-forming minerals.展开更多
The concentration of phosphate flotation concentrate with P2O5 grade lower than the commercially acceptable phosphate quality was upgraded in the use of tribo-electrostatic technique. The concentration of the flotatio...The concentration of phosphate flotation concentrate with P2O5 grade lower than the commercially acceptable phosphate quality was upgraded in the use of tribo-electrostatic technique. The concentration of the flotation concentrate stream was conducted under both triboelectrification and inductive charging mechanism. Mineralogical analysis reveals that the phosphate ore utilized was dominated mainly by fluorapatite, crandallite, wavellite, and with quartz as the major gangue mineral. Flotations concentrate of about 28.87% P2O5 was obtained from the reverse flotation technique, after conditioning the phosphate ore at 80% passing 150 lm under Lilafloat. Constant parameters such as à6 kV charging voltage, 25 kV separating voltage, inlet air, different charger rotary speed and splitter distances were investigated. Commercially accepted grade of 35.50% P2O5 was attained after the second stage of separation with a recovery of 12.26%, another phosphate product of 34.02% P2O5 and 85.19% was also recovered under the same condition. Single stage of separation also shows a significant increase in the grade of the product obtained, with 33.41% P2O5 and 84.07% recovery achievable. The practicability of tribo-electrostatic separation technique for upgrading flotation concentrates resulted in a significant increase in grade for <150 lm product that do not meet the viable grade.展开更多
This paper proposed a flexible pressure sensor based on poly(dimethylsiloxane) nanostructures film and report an efficient,simple,and low-cost fabrication strategy via soft nanoimprint lithography.The pressure sensor ...This paper proposed a flexible pressure sensor based on poly(dimethylsiloxane) nanostructures film and report an efficient,simple,and low-cost fabrication strategy via soft nanoimprint lithography.The pressure sensor can convert external pressure or mechanical deformation into electrical signal to detect pressure and strain changes based on the coupling of triboelectrification and electrostatic induction.To enhance the performance of the pressure sensor,it consists of sub-500 nm resolution on the surface of elastic poly(dimethylsiloxane) sensitive layer and an indium tin oxide electrode thin film.When the pressure applied on the nanostructures layer,triboelectrostatic charges are induced.In the experiment,it measures up to sensitivity of 0.8 V/kPa at frequency of 5 Hz.This study results in potential applications such as wearable smart devices and skin-attachable diagnostics sensing systems.展开更多
基金provided by the National Natural Science Foundation of China(No.51274200)Research Fund for the Doctoral Program of Higher Education of China(No.20130095110010)
文摘On the basis of understanding the principle of rotary triboelectrostatic separation, dynamic analysis of charged fly ash particles aimed at determining the key factors and separation experiments to improve decarbonization efficiency had been carried out Variables of electrode plate voltage and corrected wind speed are the key factors which affect the decarbonization efficiency on the separation of fly ash, The results of separation experiments show that:(1) With the plate voltage increasing, the efficiency of decarbonization continuously rises and in its selected range, the optimal voltage level is 45 KV;(2) The corrected wind speed can impact the efficiency of decarbonization significantly: with the speed increasing, the efficiency of decarbonization shows a trend of first decline, then increase and decrease again, and in its selected range, the optimal speed is 2.0 m/s. This study is of significance for the improvement of rotary triboelectrostatic separation performance and its decarbonization separation efficiency.
基金the staff of the Jordan Phosphate Mines Company for supplying the sample used in the present work.
文摘This study was performed to investigate the feasibility of applying a Rotary Triboelectrostatic Separator(RTS) to the beneficiation of Eshidiya phosphate minerals.RTS separation tests were carried out on phosphatic bed A_1,phosphatic bed A_3 and slime samples.The bed A_1 and slime samples were tested without desliming.Two sets of tests were performed using the A_3 sample: one was performed without desliming and the other with the A_3 sample deslimed.RTS separation tests as initially performed on the bed A_1 and slime samples gave products that had essentially the same P_2O_5 content.This indicated that adsorbed clay particles on the phosphate surface are responsible for the poor separation of un-deslimed phosphates.Better triboelectrostatic separation was observed with the undeslimed A_3 phosphate sample;these tests resulted in a highest product grade of 26%P_2O_5.The deslimed A_3 sample showed far more effective separation than the undeslimed A_3 one.In fact,a concentrate of 34%P_2O_5 was obtained from the triboelectrcstatic separation of deslimed A_3.The results indicate that with deslimed A_3 P_2O_5 recovery was about 65%for a concentrate of 28%P_2O_5 and about 45%for a concentrate of 30%P_2O_5.These results clearly show the importance of desliming for effective beneficiation of phosphate by the RTS.A more efficient separation can be expected from optimized operating conditions and circuit configuration.
基金National Development Programs of Major Basic Research Project(G19990 2 2 2 0 5 -0 3 )
文摘At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the results of the research on producing low ash (<2%) coal with triboelectrostatic separator used for producing high-grade active carbon. The test is conducted in bench-scale system, whose capacity is 30~100 kg/h. The results indicate that: 1) the ash content of clean coal increases with the increase of solid content of feedstock, on the contrary, the yield of clean coal is declining; 2) a high velocity may result in a good separation efficiency; 3) for the same solid content, the reunion caused by intermolecular force makes the separation efficiency drop down when the ultra-fine coal is separated; 4) the separation efficiency is improved with the increase of electric field intensity, but there is a good optimized match between the electric field intensity and yield of clean coal; 5) a low rank coal is easy-to-wash in triboelectrostatic separation process; 6) the yield of clean coal can be enhanced and the ash decreased through adapting optimized conditions according to various coals.
基金supported by the National Natural Science Foundation of China(Nos.51274200 and 51221462)
文摘The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysis of chemical and mineral composition of fly ash in Xinwen power plant. The dielectric constant and charge-mass ratio of carbon and ash of fly ash are tested. Combined with the experimental study on rotary triboelectrostatic separation, the charged characteristic of fly ash particles with different size is gained. The results show that the dielectric constant of fly ash with different grain size decreased with the decrease of particle size, which lead to the poor electrical conductivity, Thus it can be seen that par- ticle size plays a leading role in conductivity, The charge of carbon and ash with each size increased with the decreased of particle size; and the charge-mass ratio between carbon and ash with the same size lar- ger with the decrease of size, which indicated that the finer particle size, the more favorable for triboelec- trification separation. In the same conditions, the best decarburization effect is realized when the particle size ranges from 0.038 to 0.074 ram, whose decarbonization rate and efficiency index reached 38.93% and 120.83% respectively.
基金supported by the National Natural Science Foundation of China(No. 50921002)the Key Laboratory of Coal Processing and Efficient Utilization,the Ministry of Education of China(No.CPEUKF08-05).
文摘Chemical conditioning was used to modify the triboelectrification of coal and mineral particles.The chemicals tested included starch,lignin,kerosene,ethanol,acetic acid,salicylic acid,sodium oleate,Sodium Hexametaphosphate(SH),sodium silicate, Sodium Dodecylbenzenesulfonate(SDBS),Sodium Bicarbonate(SB) and ammonia.A high-speed,dry mixing method was employed.The charge-to-mass ratio of the coal and mineral samples,both untreated and treated,was tested using a Faraday cup. Dielectric constants were determined by measuring capacitance.It is found that the selectivity of the additives toward coal or minerals is not consistent.Salicylic acid is the optimal additive to enhance the triboelectrification performance of coal samples.Starch, lignin and sodium oleate are suitable for removal of pyrite.SH,sodium silicate,SDBS,SB and ammonia are suitable additives for the removal of ash-forming minerals.
基金the financial support of the South African National Energy Research Institute(SANERI)the Mineral Processing Division, Mintek
文摘The concentration of phosphate flotation concentrate with P2O5 grade lower than the commercially acceptable phosphate quality was upgraded in the use of tribo-electrostatic technique. The concentration of the flotation concentrate stream was conducted under both triboelectrification and inductive charging mechanism. Mineralogical analysis reveals that the phosphate ore utilized was dominated mainly by fluorapatite, crandallite, wavellite, and with quartz as the major gangue mineral. Flotations concentrate of about 28.87% P2O5 was obtained from the reverse flotation technique, after conditioning the phosphate ore at 80% passing 150 lm under Lilafloat. Constant parameters such as à6 kV charging voltage, 25 kV separating voltage, inlet air, different charger rotary speed and splitter distances were investigated. Commercially accepted grade of 35.50% P2O5 was attained after the second stage of separation with a recovery of 12.26%, another phosphate product of 34.02% P2O5 and 85.19% was also recovered under the same condition. Single stage of separation also shows a significant increase in the grade of the product obtained, with 33.41% P2O5 and 84.07% recovery achievable. The practicability of tribo-electrostatic separation technique for upgrading flotation concentrates resulted in a significant increase in grade for <150 lm product that do not meet the viable grade.
基金supported by the National Natural Science Foundation of China (NSFC)(Grant number 51703227,C0025053,61605211,61504147,and 61775213)Sichuan Science and Technology Program (Grant number 2019YJ0014)the Instrument Development of Chinese Academy of Sciences,The National R&D Program of China (Grant number 2017YFC0804900),.
文摘This paper proposed a flexible pressure sensor based on poly(dimethylsiloxane) nanostructures film and report an efficient,simple,and low-cost fabrication strategy via soft nanoimprint lithography.The pressure sensor can convert external pressure or mechanical deformation into electrical signal to detect pressure and strain changes based on the coupling of triboelectrification and electrostatic induction.To enhance the performance of the pressure sensor,it consists of sub-500 nm resolution on the surface of elastic poly(dimethylsiloxane) sensitive layer and an indium tin oxide electrode thin film.When the pressure applied on the nanostructures layer,triboelectrostatic charges are induced.In the experiment,it measures up to sensitivity of 0.8 V/kPa at frequency of 5 Hz.This study results in potential applications such as wearable smart devices and skin-attachable diagnostics sensing systems.