期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一类广义Tribonacci数列的性质与应用
1
作者 廖福成 王青云 牛敏 《理论数学》 2011年第1期15-20,共6页
在Tribonacci数列的基础上推广得到一类更广泛的数列——广义Tribonacci数列。分别利用组合数学和矩阵论中的方法与技巧对该数列进行了分析研究,求得了广义Tribonacci数列通项的多种表示形式。并利用其定义推导得到广义Tribonacci数列... 在Tribonacci数列的基础上推广得到一类更广泛的数列——广义Tribonacci数列。分别利用组合数学和矩阵论中的方法与技巧对该数列进行了分析研究,求得了广义Tribonacci数列通项的多种表示形式。并利用其定义推导得到广义Tribonacci数列的性质定理。同时应用广义Tribonacci数列的通项公式和性质定理解决了实际问题。进一步揭示了广义Tribonacci数列与实际生活中的现象是紧密联系的。 展开更多
关键词 广义tribonacci数列 FIBONACCI数列 生成函数 关联矩阵
下载PDF
KERNEL WORDS AND GAP SEQUENCE OF THE TRIBONACCI SEQUENCE 被引量:1
2
作者 黄煜可 文志英 《Acta Mathematica Scientia》 SCIE CSCD 2016年第1期173-194,共22页
In this paper, we investigate the factor properties and gap sequence of the Tri- bonacci sequence, the fixed point of the substitution σ(a, b, c) = (ab, ac, a). Let Wp be the p-th occurrence of w and Gp(ω) be ... In this paper, we investigate the factor properties and gap sequence of the Tri- bonacci sequence, the fixed point of the substitution σ(a, b, c) = (ab, ac, a). Let Wp be the p-th occurrence of w and Gp(ω) be the gap between Wp and Wp+l. We introduce a notion of kernel for each factor w, and then give the decomposition of the factor w with respect to its kernel. Using the kernel and the decomposition, we prove the main result of this paper: for each factor w, the gap sequence {Gp(ω)}p≥1 is the Tribonacci sequence over the alphabet {G1 (ω), G2(ω), G4(ω)}, and the expressions of gaps are determined completely. As an application, for each factor w and p C ∈N, we determine the position of Wp. Finally we introduce a notion of spectrum for studying some typical combinatorial properties, such as power, overlap and separate of factors. 展开更多
关键词 the tribonacci sequence gap sequence kernel word combinatorial property SPECTRUM
下载PDF
Tribonacci序列的丢番图方程
3
作者 吉艳娇 杨鹏 《辽宁科技大学学报》 CAS 2022年第4期294-299,共6页
给出了Tribonacci序列T_(n+2)=T_(n+1)+T_(n)+T_(n-1),T0=T_(1)=0,T_(2)=1中含有3的因子的分布,并以此证明该序列中仅有T_(2)、T_(3)、T_(4)可以表示成双阶乘;仅有T_(5)可以表示成两个阶乘的乘积;仅有T_(5)、T8可以表示成两个双阶乘的乘... 给出了Tribonacci序列T_(n+2)=T_(n+1)+T_(n)+T_(n-1),T0=T_(1)=0,T_(2)=1中含有3的因子的分布,并以此证明该序列中仅有T_(2)、T_(3)、T_(4)可以表示成双阶乘;仅有T_(5)可以表示成两个阶乘的乘积;仅有T_(5)、T8可以表示成两个双阶乘的乘积,即:丢番图方程T_(n)=m!!仅有解(n,m)∈{(2,1),(3,1),(4,2)};T_(n)=m_(1)!m_(2)!仅有解(n,m_(1),m_(2))=(5,2,2);T_(n)=m_(1)!!m_(2)!!仅有解(n,m_(1),m_(2))∈{(5,2,2),(8,3,4),(8,4,3)}。 展开更多
关键词 tribonacci序列 阶乘 双阶乘 丢番图方程
下载PDF
Tribonacci Cordial Labeling of Graphs
4
作者 Sarbari Mitra Soumya Bhoumik 《Journal of Applied Mathematics and Physics》 2022年第4期1394-1402,共9页
We introduce Tribonacci cordial labeling as an extension of Fibonacci cordial labeling, a well-known form of vertex-labelings. A graph that admits Tribonacci cordial labeling is called Tribonacci cordial graph. In thi... We introduce Tribonacci cordial labeling as an extension of Fibonacci cordial labeling, a well-known form of vertex-labelings. A graph that admits Tribonacci cordial labeling is called Tribonacci cordial graph. In this paper we investigate whether some well-known graphs are Tribonacci cordial. 展开更多
关键词 tribonacci Cordial Generalized Friendship Graph Wheel Graph Ring Sum Joint Sum
下载PDF
Tribonacci Partition Formulas Modulo m
5
作者 Ji■í KLA■KA 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第3期465-476,共12页
Each Tribonacci sequence starting with an arbitrary triple of integers is periodic modulo m for any modulus m 〉 1. For a given m, the mapping between the set S of all m^3 triples of initial values and the set of thei... Each Tribonacci sequence starting with an arbitrary triple of integers is periodic modulo m for any modulus m 〉 1. For a given m, the mapping between the set S of all m^3 triples of initial values and the set of their coresponding periods define a partition of the set S. In this paper we shall investigate some basic questions related to these partitions from the point of view of enumerative combinatorics. 展开更多
关键词 tribonacci sequence modular periodicity partition formulas
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部