为了解旋毛虫ES抗原对宿主巨噬细胞NOD1受体通路的影响,本研究通过体外实验将旋毛虫ES抗原作用于小鼠腹腔巨噬细胞,观察NOD1受体及其信号通路中关键分子及相关细胞因子的表达动态。应用荧光定量PCR监测细胞内NOD1、RIP2和NF-κB m RNA...为了解旋毛虫ES抗原对宿主巨噬细胞NOD1受体通路的影响,本研究通过体外实验将旋毛虫ES抗原作用于小鼠腹腔巨噬细胞,观察NOD1受体及其信号通路中关键分子及相关细胞因子的表达动态。应用荧光定量PCR监测细胞内NOD1、RIP2和NF-κB m RNA的转录水平,western blot测定NOD1、RIP2、NF-κBp65、NF-κB p-p65蛋白表达量,ELISA测定细胞培养上清中TNF-α、IL-1β和IL-6含量变化。结果显示,在一定的ES抗原作用浓度和时间范围内,巨噬细胞中各目的基因的转录水平均先增高,当作用时间和作用浓度超过一定值时则开始下降,作用24 h时NOD1 m RNA转录水平显著低于对照组(p<0.01);ES抗原浓度15μg/mL作用时间9 h时,巨噬细胞中NOD1、RIP2和NF-κB p-p65蛋白量显著增加(p<0.01),此时巨噬细胞培养上清中TNF-α、IL-1β、IL-6含量显著增高(p<0.01)。结果表明,旋毛虫ES抗原在一定的作用时间和浓度范围内,可以激活并调节小鼠腹腔巨噬细胞中NOD1受体通路,上调NOD1受体通路中关键分子RIP2和下游分子NF-κB的表达,可以促进细胞因子TNF-α、IL-1β和IL-6的分泌;并且超过一定时间和浓度的ES抗原刺激可以导致小鼠腹腔巨噬细胞出现免疫耐受。本研究证明了宿主NOD1受体参与了旋毛虫引起的宿主免疫应答,为旋毛虫病防治和理解旋毛虫对宿主的感染机制提供新的思路。展开更多
应用RT-PCR方法从不同来源的6株旋毛虫肌幼虫总RNA中克隆49 ku ES抗原基因序列,与GenBank中T.spiralis相应序列进行比对分析。结果表明,旋毛虫49 ku ES基因具有相当强的保守性,不同虫株核苷酸和氨基酸序列的同源性分别达97.2%和94.0%以...应用RT-PCR方法从不同来源的6株旋毛虫肌幼虫总RNA中克隆49 ku ES抗原基因序列,与GenBank中T.spiralis相应序列进行比对分析。结果表明,旋毛虫49 ku ES基因具有相当强的保守性,不同虫株核苷酸和氨基酸序列的同源性分别达97.2%和94.0%以上,序列间差异很小,不能较好地区分各旋毛虫种;该基因编码蛋白的抗原性很稳定,不同旋毛虫49 ku ES抗原性几乎没有差别,只要获得一个虫株的重组49 ku ES蛋白,即可用于其他不同种株旋毛虫病的免疫诊断及预防。展开更多
根据GenBank中已登录的猪旋毛虫49 ku ES抗原基因序列设计了1对引物,用SDS裂解液配合蛋白酶K方法从猪旋毛虫不同发育时期(成囊前期幼虫、肌幼虫、成虫)虫体中提取总RNA,用RT-PCR方法扩增49 ku ES抗原基因,将目的基因定向克隆入pMD18-T载...根据GenBank中已登录的猪旋毛虫49 ku ES抗原基因序列设计了1对引物,用SDS裂解液配合蛋白酶K方法从猪旋毛虫不同发育时期(成囊前期幼虫、肌幼虫、成虫)虫体中提取总RNA,用RT-PCR方法扩增49 ku ES抗原基因,将目的基因定向克隆入pMD18-T载体,转化大肠埃希氏菌TG1。用PCR、限制性内切酶EcoRⅠ和BamHⅠ进行单、双酶切鉴定,阳性质粒的测序结果表明,成功克隆了猪旋毛虫不同发育时期虫体49 ku ES抗原基因。序列分析结果显示:49 kuES抗原基因大小为948 bp,基因的保守性很强,序列同源性比较高,不同发育时期之间的差异很小。展开更多
目的鉴定旋毛虫(Trichinella spiralis,T1)与伪旋毛虫(T.pseudospiralis,T4)肌幼虫的差异蛋白。方法应用SDS-PAGE和双向电泳(two-dimensional gel electrophoresis,2-DE)对T1、T4肌幼虫的可溶性抗原与培养24h的ES抗原的蛋白组分进行分...目的鉴定旋毛虫(Trichinella spiralis,T1)与伪旋毛虫(T.pseudospiralis,T4)肌幼虫的差异蛋白。方法应用SDS-PAGE和双向电泳(two-dimensional gel electrophoresis,2-DE)对T1、T4肌幼虫的可溶性抗原与培养24h的ES抗原的蛋白组分进行分析。结果SDS-PAGE显示,T1肌幼虫可溶性抗原有22条蛋白带(221.62kDa~14.88kDa),其中6条为T1特异性蛋白带(59.72、44.37、23.66、22.36、18.26、16.34kDa);T4可溶性抗原蛋白有18条带(185.28kDa~14.27kDa),其中4条为T4特异性蛋白带(132.60、119.30、35.26、31.02kDa)。T1的ES抗原有10条蛋白带(113.21kDa~14.37kDa),T4的ES抗原有9条蛋白带(104.71kDa~14.51kDa),T1、T4肌幼虫ES抗原的蛋白带均不相同。2-DE显示,T1可溶性抗原有193±12个蛋白点,分子量主要为11kDa~22kDa、25kDa~64kDa及100kDa~144kDa,所对应的等电点(pI)分别为4.7~8.2、4.5~6.5及5~7;T4可溶性抗原有175±9个蛋白点,分子量主要为12kDa~21kDa及25kDa~90kDa,所对应的pI分别为4~9.5与4.5~9.6。T1的ES抗原具有82±6个蛋白点,分子量主要为13kDa~16kDa、18kDa~22kDa及40kDa~55kDa,所对应的pI分别为4~7、3.8~6.2及5~9;T4的ES抗原具有69±5个蛋白点,分子量主要为10kDa~15kDa、17kDa~25kDa及29kDa~55kDa,所对应的pI分别为4.7~6.5、4.6~6及5~7。结论旋毛虫肌幼虫可溶性抗原及ES抗原的蛋白组分与伪旋毛虫的明显不同。展开更多
目的评价旋毛虫肌幼虫排泄分泌(excretory-secretory,ES)抗原诊断早期旋毛虫病的价值。方法应用旋毛虫肌幼虫ES抗原Western blot对旋毛虫感染后6~11d的小鼠血清及19d的早期旋毛虫病人血清进行检测,并与感染后35d的晚期旋毛虫病人和其他...目的评价旋毛虫肌幼虫排泄分泌(excretory-secretory,ES)抗原诊断早期旋毛虫病的价值。方法应用旋毛虫肌幼虫ES抗原Western blot对旋毛虫感染后6~11d的小鼠血清及19d的早期旋毛虫病人血清进行检测,并与感染后35d的晚期旋毛虫病人和其他寄生虫病人血清的检测结果进行比较。结果 Western blot分析显示,肌幼虫ES蛋白中的2条蛋白带(41.5、55kDa)可被旋毛虫感染后7~11d的小鼠血清识别,6条蛋白带(41.5、44.1、45、55、61和65.2kDa)能被早期和晚期旋毛虫病人血清识别,阳性反应率均为100%(15/15);这6条蛋白带与裂头蚴病人和健康人血清无交叉反应,但与其他寄生虫病(血吸虫病、并殖吸虫病、华支睾吸虫病、棘球蚴病及囊尾蚴病)患者血清具有明显的交叉反应(19.12%~38.23%)。结论旋毛虫肌幼虫ES抗原中的41.5kDa^65.2kDa蛋白带可与旋毛虫感染早期血清反应,但与其他蠕虫病患者有明显的交叉反应。展开更多
文摘为了解旋毛虫ES抗原对宿主巨噬细胞NOD1受体通路的影响,本研究通过体外实验将旋毛虫ES抗原作用于小鼠腹腔巨噬细胞,观察NOD1受体及其信号通路中关键分子及相关细胞因子的表达动态。应用荧光定量PCR监测细胞内NOD1、RIP2和NF-κB m RNA的转录水平,western blot测定NOD1、RIP2、NF-κBp65、NF-κB p-p65蛋白表达量,ELISA测定细胞培养上清中TNF-α、IL-1β和IL-6含量变化。结果显示,在一定的ES抗原作用浓度和时间范围内,巨噬细胞中各目的基因的转录水平均先增高,当作用时间和作用浓度超过一定值时则开始下降,作用24 h时NOD1 m RNA转录水平显著低于对照组(p<0.01);ES抗原浓度15μg/mL作用时间9 h时,巨噬细胞中NOD1、RIP2和NF-κB p-p65蛋白量显著增加(p<0.01),此时巨噬细胞培养上清中TNF-α、IL-1β、IL-6含量显著增高(p<0.01)。结果表明,旋毛虫ES抗原在一定的作用时间和浓度范围内,可以激活并调节小鼠腹腔巨噬细胞中NOD1受体通路,上调NOD1受体通路中关键分子RIP2和下游分子NF-κB的表达,可以促进细胞因子TNF-α、IL-1β和IL-6的分泌;并且超过一定时间和浓度的ES抗原刺激可以导致小鼠腹腔巨噬细胞出现免疫耐受。本研究证明了宿主NOD1受体参与了旋毛虫引起的宿主免疫应答,为旋毛虫病防治和理解旋毛虫对宿主的感染机制提供新的思路。
文摘应用RT-PCR方法从不同来源的6株旋毛虫肌幼虫总RNA中克隆49 ku ES抗原基因序列,与GenBank中T.spiralis相应序列进行比对分析。结果表明,旋毛虫49 ku ES基因具有相当强的保守性,不同虫株核苷酸和氨基酸序列的同源性分别达97.2%和94.0%以上,序列间差异很小,不能较好地区分各旋毛虫种;该基因编码蛋白的抗原性很稳定,不同旋毛虫49 ku ES抗原性几乎没有差别,只要获得一个虫株的重组49 ku ES蛋白,即可用于其他不同种株旋毛虫病的免疫诊断及预防。
文摘根据GenBank中已登录的猪旋毛虫49 ku ES抗原基因序列设计了1对引物,用SDS裂解液配合蛋白酶K方法从猪旋毛虫不同发育时期(成囊前期幼虫、肌幼虫、成虫)虫体中提取总RNA,用RT-PCR方法扩增49 ku ES抗原基因,将目的基因定向克隆入pMD18-T载体,转化大肠埃希氏菌TG1。用PCR、限制性内切酶EcoRⅠ和BamHⅠ进行单、双酶切鉴定,阳性质粒的测序结果表明,成功克隆了猪旋毛虫不同发育时期虫体49 ku ES抗原基因。序列分析结果显示:49 kuES抗原基因大小为948 bp,基因的保守性很强,序列同源性比较高,不同发育时期之间的差异很小。
文摘目的鉴定旋毛虫(Trichinella spiralis,T1)与伪旋毛虫(T.pseudospiralis,T4)肌幼虫的差异蛋白。方法应用SDS-PAGE和双向电泳(two-dimensional gel electrophoresis,2-DE)对T1、T4肌幼虫的可溶性抗原与培养24h的ES抗原的蛋白组分进行分析。结果SDS-PAGE显示,T1肌幼虫可溶性抗原有22条蛋白带(221.62kDa~14.88kDa),其中6条为T1特异性蛋白带(59.72、44.37、23.66、22.36、18.26、16.34kDa);T4可溶性抗原蛋白有18条带(185.28kDa~14.27kDa),其中4条为T4特异性蛋白带(132.60、119.30、35.26、31.02kDa)。T1的ES抗原有10条蛋白带(113.21kDa~14.37kDa),T4的ES抗原有9条蛋白带(104.71kDa~14.51kDa),T1、T4肌幼虫ES抗原的蛋白带均不相同。2-DE显示,T1可溶性抗原有193±12个蛋白点,分子量主要为11kDa~22kDa、25kDa~64kDa及100kDa~144kDa,所对应的等电点(pI)分别为4.7~8.2、4.5~6.5及5~7;T4可溶性抗原有175±9个蛋白点,分子量主要为12kDa~21kDa及25kDa~90kDa,所对应的pI分别为4~9.5与4.5~9.6。T1的ES抗原具有82±6个蛋白点,分子量主要为13kDa~16kDa、18kDa~22kDa及40kDa~55kDa,所对应的pI分别为4~7、3.8~6.2及5~9;T4的ES抗原具有69±5个蛋白点,分子量主要为10kDa~15kDa、17kDa~25kDa及29kDa~55kDa,所对应的pI分别为4.7~6.5、4.6~6及5~7。结论旋毛虫肌幼虫可溶性抗原及ES抗原的蛋白组分与伪旋毛虫的明显不同。
文摘目的评价旋毛虫肌幼虫排泄分泌(excretory-secretory,ES)抗原诊断早期旋毛虫病的价值。方法应用旋毛虫肌幼虫ES抗原Western blot对旋毛虫感染后6~11d的小鼠血清及19d的早期旋毛虫病人血清进行检测,并与感染后35d的晚期旋毛虫病人和其他寄生虫病人血清的检测结果进行比较。结果 Western blot分析显示,肌幼虫ES蛋白中的2条蛋白带(41.5、55kDa)可被旋毛虫感染后7~11d的小鼠血清识别,6条蛋白带(41.5、44.1、45、55、61和65.2kDa)能被早期和晚期旋毛虫病人血清识别,阳性反应率均为100%(15/15);这6条蛋白带与裂头蚴病人和健康人血清无交叉反应,但与其他寄生虫病(血吸虫病、并殖吸虫病、华支睾吸虫病、棘球蚴病及囊尾蚴病)患者血清具有明显的交叉反应(19.12%~38.23%)。结论旋毛虫肌幼虫ES抗原中的41.5kDa^65.2kDa蛋白带可与旋毛虫感染早期血清反应,但与其他蠕虫病患者有明显的交叉反应。