本文研究了Marcinkiewicz积分交换子μΩ,b(f)(x)=(integral from n=0 to ∞|Fb,t(f)(x)|2 dt/t3)1/2, 其中Fb,t(f)(x)=integral from n=|x-y|≤t(Ω(x-y_/|x-y|n-1)b(x)-b(y)f(y)dy及b∈Λβ,证明了算子μΩ,b是Lp(Rn) 到Fβ,∞p(Rn)...本文研究了Marcinkiewicz积分交换子μΩ,b(f)(x)=(integral from n=0 to ∞|Fb,t(f)(x)|2 dt/t3)1/2, 其中Fb,t(f)(x)=integral from n=|x-y|≤t(Ω(x-y_/|x-y|n-1)b(x)-b(y)f(y)dy及b∈Λβ,证明了算子μΩ,b是Lp(Rn) 到Fβ,∞p(Rn)上的有界算子并且也是Lp(Rn)到Lq(Rn)上的有界算子.展开更多
基金Supported by NNSF of China(11401120)Foundation for Distinguished Young Teachers in Higher Education of Guangdong Province(YQ2015126)+1 种基金Foundation for Young Innovative Talents in Higher Education of Guangdong(2014KQNCX111)Innovation Program of Higher Education of Guangdong(2015KTSCX105)
文摘本文研究了Marcinkiewicz积分交换子μΩ,b(f)(x)=(integral from n=0 to ∞|Fb,t(f)(x)|2 dt/t3)1/2, 其中Fb,t(f)(x)=integral from n=|x-y|≤t(Ω(x-y_/|x-y|n-1)b(x)-b(y)f(y)dy及b∈Λβ,证明了算子μΩ,b是Lp(Rn) 到Fβ,∞p(Rn)上的有界算子并且也是Lp(Rn)到Lq(Rn)上的有界算子.