In this paper,we study the completely monotonic property of two functions involving the functionΔ(x)=[ψ′(x)]2+ψ″(x)and deduce the double inequality x^(2)+3x+3/3x^(4)(2x+1)^(2)<Δ(x)<625x^(2)+2275x+5043/3x^(...In this paper,we study the completely monotonic property of two functions involving the functionΔ(x)=[ψ′(x)]2+ψ″(x)and deduce the double inequality x^(2)+3x+3/3x^(4)(2x+1)^(2)<Δ(x)<625x^(2)+2275x+5043/3x^(4)(50x+41)^(2),x>0which improve some recent results,whereψ(x)is the logarithmic derivative of the Gamma function.Also,we deduce the completely monotonic degree of a function involvingψ′(x).展开更多
In this paper,by deriving an inequality involving the generating function of the Bernoulli numbers,the author introduces a new ratio of finitely many gamma functions,finds complete monotonicity of the second logarithm...In this paper,by deriving an inequality involving the generating function of the Bernoulli numbers,the author introduces a new ratio of finitely many gamma functions,finds complete monotonicity of the second logarithmic derivative of the ratio,and simply reviews the complete monotonicity of several linear combinations of finitely many digamma or trigamma functions.展开更多
文摘In this paper,we study the completely monotonic property of two functions involving the functionΔ(x)=[ψ′(x)]2+ψ″(x)and deduce the double inequality x^(2)+3x+3/3x^(4)(2x+1)^(2)<Δ(x)<625x^(2)+2275x+5043/3x^(4)(50x+41)^(2),x>0which improve some recent results,whereψ(x)is the logarithmic derivative of the Gamma function.Also,we deduce the completely monotonic degree of a function involvingψ′(x).
基金partially supported by the National Nature Science Foundation of China(12061033)。
文摘In this paper,by deriving an inequality involving the generating function of the Bernoulli numbers,the author introduces a new ratio of finitely many gamma functions,finds complete monotonicity of the second logarithmic derivative of the ratio,and simply reviews the complete monotonicity of several linear combinations of finitely many digamma or trigamma functions.