Peripheral and central sensitizations are phenomena that occur during migraine. The role of gabapentin, a migraine preventive drug, on central sensitization remains unclear. In this study, a rat model of migraine was ...Peripheral and central sensitizations are phenomena that occur during migraine. The role of gabapentin, a migraine preventive drug, on central sensitization remains unclear. In this study, a rat model of migraine was established by electrical stimulation of the trigeminal ganglion, and the animals were given intragastric gabapentin. Changes in amino acid content in the cerebrospinal fluid and protein kinase C membrane translocation in the spinal trigeminal nucleus were examined to clarify the mechanisms underlying the efficacy of gabapentin in the treatment of central sensiti- zation during migraine. Electrophysiology, liquid chromatography-mass spectrometry and western blot analysis results revealed that gabapentin reduces neuronal excitability in the spinal nucleus in the trigeminal nerve, decreases excitatory amino acid content and inhibits the activation of protein kinase C. This provides evidence that excitatory amino acids and protein kinase C are involved in the formation and maintenance of central sensitization during migraine. Gabapentin inhibits mi- graine by reducing excitatory amino acid content in the cerebrospinal fluid and inhibiting protein kinase C activation.展开更多
基金financially sponsored by the Natural Science Foundation of Shandong Province,No.ZR2012HQ014a grant from the Science and Technology Plan Program of Universities in Shandong Province,No.J10LF14
文摘Peripheral and central sensitizations are phenomena that occur during migraine. The role of gabapentin, a migraine preventive drug, on central sensitization remains unclear. In this study, a rat model of migraine was established by electrical stimulation of the trigeminal ganglion, and the animals were given intragastric gabapentin. Changes in amino acid content in the cerebrospinal fluid and protein kinase C membrane translocation in the spinal trigeminal nucleus were examined to clarify the mechanisms underlying the efficacy of gabapentin in the treatment of central sensiti- zation during migraine. Electrophysiology, liquid chromatography-mass spectrometry and western blot analysis results revealed that gabapentin reduces neuronal excitability in the spinal nucleus in the trigeminal nerve, decreases excitatory amino acid content and inhibits the activation of protein kinase C. This provides evidence that excitatory amino acids and protein kinase C are involved in the formation and maintenance of central sensitization during migraine. Gabapentin inhibits mi- graine by reducing excitatory amino acid content in the cerebrospinal fluid and inhibiting protein kinase C activation.