Microfluidic behavior of ternary mixed carrier solvents of water-acetonitrile-ethyl acetate (2:3:1 volume ratio) was examined by use of a microchip incorporating microchannels in which one wide channel was separated i...Microfluidic behavior of ternary mixed carrier solvents of water-acetonitrile-ethyl acetate (2:3:1 volume ratio) was examined by use of a microchip incorporating microchannels in which one wide channel was separated into three narrow channels, i.e., triple-branched microchannels. When the ternary carrier solution containing the fluorescent dyes, hydrophobic perylene (blue) and relatively hydrophilic Eosin Y (green), was fed into the wide channel under laminar flow conditions, the carrier solvent molecules or fluorescence dyes were radially distributed in the channel, forming inner (organic solvent-rich major;blue) and outer (water-rich minor;green) phases in the wide channel. And then, in the narrow channels, perylene molecules mostly appeared to flow through the center narrow channel and Eosin Y, which is distributed in the outer phases in the wide channel, flowed through the both side narrow channels. A metal ion, Cu(II) as a model, dissolved in the ternary mixed carrier solution was also examined. The Cu(II) showed fluidic behavior, transferring from the homogeneous carrier solution to the water-rich solution in the side narrow channels through the triple-branched microchannels.展开更多
In this work, the performance of free-space optical(FSO) communication system based on maximal ratio combining using binary phase shift keying subcarrier intensity modulation over Gamma-Gamma fading channels has been ...In this work, the performance of free-space optical(FSO) communication system based on maximal ratio combining using binary phase shift keying subcarrier intensity modulation over Gamma-Gamma fading channels has been studied systematically. Under identically or non-identically distributed branches, the analytical expressions for the bit error rate function of signal-to-noise are derived by expressing the modified Bessel function of second kind with Meijer G-function for dualand triple-branch systems, respectively. In terms of H-fox function, the new expressions have more general forms and are more efficient for computation. It is found that the dual-and triple-branch systems significantly outperform the direct link system under weak, moderate and strong turbulence conditions. Monte Carlo simulation is also provided to confirm the accuracy of the proposed model.展开更多
文摘Microfluidic behavior of ternary mixed carrier solvents of water-acetonitrile-ethyl acetate (2:3:1 volume ratio) was examined by use of a microchip incorporating microchannels in which one wide channel was separated into three narrow channels, i.e., triple-branched microchannels. When the ternary carrier solution containing the fluorescent dyes, hydrophobic perylene (blue) and relatively hydrophilic Eosin Y (green), was fed into the wide channel under laminar flow conditions, the carrier solvent molecules or fluorescence dyes were radially distributed in the channel, forming inner (organic solvent-rich major;blue) and outer (water-rich minor;green) phases in the wide channel. And then, in the narrow channels, perylene molecules mostly appeared to flow through the center narrow channel and Eosin Y, which is distributed in the outer phases in the wide channel, flowed through the both side narrow channels. A metal ion, Cu(II) as a model, dissolved in the ternary mixed carrier solution was also examined. The Cu(II) showed fluidic behavior, transferring from the homogeneous carrier solution to the water-rich solution in the side narrow channels through the triple-branched microchannels.
基金supported by the National Natural Science Foundation of China (Grant No. 61671347)the Fundamental ResearchFunds for the Central Universities (Grant No. 20106151859 & 20106161859)supported by 111 Project of China (B08038)
文摘In this work, the performance of free-space optical(FSO) communication system based on maximal ratio combining using binary phase shift keying subcarrier intensity modulation over Gamma-Gamma fading channels has been studied systematically. Under identically or non-identically distributed branches, the analytical expressions for the bit error rate function of signal-to-noise are derived by expressing the modified Bessel function of second kind with Meijer G-function for dualand triple-branch systems, respectively. In terms of H-fox function, the new expressions have more general forms and are more efficient for computation. It is found that the dual-and triple-branch systems significantly outperform the direct link system under weak, moderate and strong turbulence conditions. Monte Carlo simulation is also provided to confirm the accuracy of the proposed model.