Objective:To study the influence of targeted inhibition of Notch1 gene on the killing effects of Paclitaxel on triple-negative breast cancer cells.Methods:The triple-negative [estrogen receptor(ER)/progesterone recept...Objective:To study the influence of targeted inhibition of Notch1 gene on the killing effects of Paclitaxel on triple-negative breast cancer cells.Methods:The triple-negative [estrogen receptor(ER)/progesterone receptor(PR)/human epidermal growth factor receptor 2(Her2)] breast cancer cell line MDA-MB-231 and ER/PR/HER-2-positive breast cancer cell line MCF-7 were cultured,transfected with Notch1-si RNA-overexpression plasmid and blank plasmid,and treated with different concentrations of paclitaxel,and then the cell proliferation activity and apoptosis rate as well as the m RNA expression of Caspase-3,Caspase-9 and Bcl-2 were determined.Results:Paclitaxel could decrease the MDA-MB-231 and MCF-7 cell proliferation activity as well as Bcl-2 mRNA expression,and increase MDA-MB-231 and MCF-7 cell apoptosis rate as well as Caspase-3 and Caspase-9 mRNA expression in dosedependent manners;with the same dose of paclitaxel treatment,the inhibitory effects on MDAMB-231 cell proliferation activity and Bcl-2 m RNA expression as well as the promoting effects on MDA-MB-231 cell apoptosis and mR NA expression of Caspase-3 and Caspase-9 were weaker than those on MCF-7 cell;after 0.5 μM paclitaxel combined with Notch1-siRNA treatment,MDA-MB-231 cell proliferation activity and Bcl-2 mRNA expression were significantly lower than those after 0.5 μM paclitaxel combined with control plasmid treatment while cell apoptosis rate and mR NA expression of Caspase-3 and Caspase-9 were higher than those after 0.5 μM paclitaxel combined with control plasmid treatment.Conclusions:Targeted inhibition of Notch1 gene may enhance the killing effects of paclitaxel on triple-negative breast cancer cells by up-regulating the expression of Caspase-3 and Caspase-9 and inhibiting the expression of Bcl-2.展开更多
Objective:To investigate the effect of the hexane solvent fraction of Halymenia durvillei(HDHE)on triple-negative breast cancer.Methods:The phytochemical profile of HDHE was investigated by GC-MS.The cytotoxicity of H...Objective:To investigate the effect of the hexane solvent fraction of Halymenia durvillei(HDHE)on triple-negative breast cancer.Methods:The phytochemical profile of HDHE was investigated by GC-MS.The cytotoxicity of HDHE against MDA-MB-231 cells was determined.The apoptotic and autophagic effects of HDHE were analyzed.The expression of molecular markers controlling apoptosis,autophagy,DNA damage,and endoplasmic reticulum(ER)stress was determined.Results:HDHE contains a mixture of fatty acids,mainly hexadecanoic acid.HDHE at a cytotoxic concentration induced apoptotic death of MDA-MB-231 cells through mitochondrial membrane dysfunction,and induction of apoptosis markers,and increased the expression of proteins related to DNA damage response.HDHE also induced the expression of LC-3,a marker of autophagic cell death at a cytotoxic concentration.Moreover,HDHE modulated the expression of ER stress genes.Conclusions:The hexadecanoic acid-enriched extract of Halymenia durvillei promotes apoptosis and autophagy of human triple-negative breast cancer cells.This extract may be further explored as an anticancer agent for triple-negative breast cancer.展开更多
Synthetic phosphoethanolamine(Pho-s)is a monophosphoester ester with anti-inflammatory and pro-apoptotic properties.Meclizine chloridrate(MC)is a histamine H1 receptor blocker that is also able to inhibit cellular res...Synthetic phosphoethanolamine(Pho-s)is a monophosphoester ester with anti-inflammatory and pro-apoptotic properties.Meclizine chloridrate(MC)is a histamine H1 receptor blocker that is also able to inhibit cellular respiration.However,MC does not inhibit cellular respiration in isolated mitochondria such as antimycin and rotenone.Methyl-β-cyclodextrin(MβCD)belongs to theβ-cyclodextrin family,which is capable of removing cholesterol from the plasma membrane.The aim of this study was to evaluate the proliferative effects of meclizine chloridrate and methyl-β-cyclodextrin compounds associated with synthetic phosphoethanolamine in a triple-negative human breast tumor line,MDA-MB-231 Cell viability of the tumor line and normal cells FN1 was evaluated by MTT colorimetric test;the production of free radicals was determined by lipoperoxidation(LPO)test;and the percentage of cell cycle phases and proliferative index was evaluated by flow cytometry.Cell viability demonstrated a significant decrease with the treatments of MβCD,MC and Pho-s associated with MC.The production of free radicals decreases significantly in all treatments.In addition,a significant increase of DNA fragment and decrease in G0/G1 cell cycle phase were observed in cellular percentage with concentrations of 20 and 30 mM of Pho-s in association with MC and MβCD,respectively.展开更多
BACKGROUND The programmed cell death protein 1 inhibitor pembrolizumab has become a key treatment for various cancers,including triple-negative breast cancer.However,it is associated with immune-related adverse events...BACKGROUND The programmed cell death protein 1 inhibitor pembrolizumab has become a key treatment for various cancers,including triple-negative breast cancer.However,it is associated with immune-related adverse events,including rare but serious neurological complications such as Guillain-Barrésyndrome(GBS).GBS is a potentially life-threatening autoimmune disorder characterized by muscle weakness and paralysis.We present a unique case of pembrolizumab-induced GBS to highlight the importance of recognizing this complication and managing it promptly in patients receiving immune checkpoint inhibitors.CASE SUMMARY A 69-year-old woman with a medical history of hypertension,anxiety,depression,and stage IIIB triple-negative breast cancer treated with pembrolizumab,carboplatin,and paclitaxel,presented to the emergency department with a 1-month history of tingling,lower extremity weakness,and shooting pain.Symptoms progressed to global weakness,ascending paralysis,and double vision.Neurological examination revealed significant lower extremity weakness and sensory deficits.Magnetic resonance imaging of the lumbar spine and cerebrospinal fluid analysis confirmed GBS.Initial treatment with intravenous immunoglobulin led to relapse,requiring additional intravenous immunoglobulin and high-dose glucocorticoids.The patient’s condition improved,pembrolizumab therapy was permanently discontinued,and she was discharged to a rehabilitation facility.CONCLUSION Pembrolizumab can induce GBS,necessitating early recognition,prompt diagnosis,and multidisciplinary management to prevent serious complications.展开更多
Breast cancer remains a leading cause of mortality in women worldwide.Triple-negative breast cancer(TNBC)is a particularly aggressive subtype characterized by rapid progression,poor prognosis,and lack of clear therape...Breast cancer remains a leading cause of mortality in women worldwide.Triple-negative breast cancer(TNBC)is a particularly aggressive subtype characterized by rapid progression,poor prognosis,and lack of clear therapeutic targets.In the clinic,delineation of tumor heterogeneity and development of effective drugs continue to pose considerable challenges.Within the scope of our study,high heterogeneity inherent to breast cancer was uncovered based on the landscape constructed from both tumor and healthy breast tissue samples.Notably,TNBC exhibited significant specificity regarding cell proliferation,differentiation,and disease progression.Significant associations between tumor grade,prognosis,and TNBC oncogenes were established via pseudotime trajectory analysis.Consequently,we further performed comprehensive characterization of the TNBC microenvironment.A crucial epithelial subcluster,E8,was identified as highly malignant and strongly associated with tumor cell proliferation in TNBC.Additionally,epithelial-mesenchymal transition(EMT)-associated fibroblast and M2 macrophage subclusters exerted an influence on E8 through cellular interactions,contributing to tumor growth.Characteristic genes in these three cluster cells could therefore serve as potential therapeutic targets for TNBC.The collective findings provided valuable insights that assisted in the screening of a series of therapeutic drugs,such as pelitinib.We further confirmed the anti-cancer effect of pelitinib in an orthotopic 4T1 tumor-bearing mouse model.Overall,our study sheds light on the unique characteristics of TNBC at single-cell resolution and the crucial cell types associated with tumor cell proliferation that may serve as potent tools in the development of effective anti-cancer drugs.展开更多
Objective Triple-negative breast cancer(TNBC)poses a significant challenge for treatment efficacy.CD8+T cells,which are pivotal immune cells,can be effectively analyzed for differential gene expression across diverse ...Objective Triple-negative breast cancer(TNBC)poses a significant challenge for treatment efficacy.CD8+T cells,which are pivotal immune cells,can be effectively analyzed for differential gene expression across diverse cell populations owing to rapid advancements in sequencing technology.By leveraging these genes,our objective was to develop a prognostic model that accurately predicts the prognosis of patients with TNBC and their responsiveness to immunotherapy.Methods Sample information and clinical data of TNBC were sourced from The Cancer Genome Atlas and METABRIC databases.In the initial stage,we identified 67 differentially expressed genes associated with immune response in CD8+T cells.Subsequently,we narrowed our focus to three key genes,namely CXCL13,GBP2,and GZMB,which were used to construct a prognostic model.The accuracy of the model was assessed using the validation set data and receiver operating characteristic(ROC)curves.Furthermore,we employed various methods,including Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway,immune infiltration,and correlation analyses with CD274(PD-L1)to explore the model's predictive efficacy in immunotherapeutic responses.Additionally,we investigated the potential underlying biological pathways that contribute to divergent treatment responses.Results We successfully developed a model capable of predicting the prognosis of patients with TNBC.The areas under the curve(AUC)values for the 1-,3-,and 5-year survival predictions were 0.618,0.652,and 0.826,respectively.Employing this risk model,we stratified the samples into high-and low-risk groups.Through KEGG enrichment analysis,we observed that the high-risk group predominantly exhibited enrichment in metabolism-related pathways such as drug and chlorophyll metabolism,whereas the low-risk group demonstrated significant enrichment in cytokine pathways.Furthermore,immune landscape analysis revealed noteworthy variations between(PD-L1)expression and risk scores,indicating that our model effectively predicted the response of patients to immune-based treatments.Conclusion Our study demonstrates the potential of CXCL13,GBP2,and GZMB as prognostic indicators of clinical outcomes and immunotherapy responses in patients with TNBC.These findings provide valuable insights and novel avenues for developing immunotherapeutic approaches targeting TNBC.展开更多
Objective: Vasculogenic mimicry(VM) channels that are lined by tumor cells are a functional blood supply in malignant tumors.However, the role of VM-initiating cells remains poorly understood. Cancer stem-like cells(C...Objective: Vasculogenic mimicry(VM) channels that are lined by tumor cells are a functional blood supply in malignant tumors.However, the role of VM-initiating cells remains poorly understood. Cancer stem-like cells(CSCs) are positively correlated with VM. In this study, triple-negative breast cancer(TNBC) enriched with CSCs was used to investigate the relationship between VM and CSCs.Methods: The expression of several CSC markers was detected by immunohistochemistry in 100 human breast cancer samples.The clinical significance of CSC markers and the relationship between VM, CSCs, breast cancer subtypes, and VM-associated proteins were analyzed. CD133+ and ALDH+ human and mouse TNBC cells were isolated by FACS to examine the ability of VM formation and the spatial relationship between VM and CSCs.Results: CSCs were associated with TNBC subtype and VM in human invasive breast cancer. CSCs in TNBC MDA-MB-231 cells formed more VM channels and expressed more molecules promoting VM than the non-TNBC MCF-7 cells in vitro. MDA-MB-231 cells that encircled VM channels on Matrigel expressed CD133. Moreover, CSCs were located near VM channels in the 3D reconstructed blood supply system in human TNBC grafts. The CD133+ and ALDH+ cells isolated from TA2 mouse breast cancer formed more VM channels in vivo.Conclusions: CSCs line VM channels directly. Additionally, CSCs provide more VM-related molecules to synergize VM formation. The signaling pathways that control CSC differentiation may also be potential treatment targets for TNBC.展开更多
Objective: To examine the efficacy and safety of a sequential combination of chemotherapy and autologous cytokine-induced killer(CIK) cell treatment in triple-negative breast cancer(TNBC) patients.Methods: A total of ...Objective: To examine the efficacy and safety of a sequential combination of chemotherapy and autologous cytokine-induced killer(CIK) cell treatment in triple-negative breast cancer(TNBC) patients.Methods: A total of 294 post-surgery TNBC patients participated in the research from January 1, 2009 to January 1, 2015. After adjuvant chemotherapy, autologous CIK cells were introduced in 147 cases(CIK group), while adjuvant chemotherapy alone was used to treat the remaining 147 cases(control group). The major endpoints of the investigation were the disease-free survival(DFS) and overall survival(OS). Additionally, the side effects of the treatment were evaluated.Results: In the CIK group, the DFS and OS intervals of the patients were significantly longer than those of the control group(DFS:P = 0.047;OS: P = 0.007). The multivariate analysis demonstrated that the TNM(tumor-node-metastasis) stage and adjuvant CIK treatment were independent prognostic factors for both DFS [hazard ratio(HR)= 0.520, 95% confidence interval(CI):0.271-0.998, P = 0.049;HR = 1.449, 95% CI:1.118-1.877, P = 0.005, respectively] and OS(HR=0.414, 95% CI:0.190-0.903, P = 0.027;HR= 1.581, 95% CI:1.204-2.077, P = 0.001, respectively) in patients with TNBC. Additionally, longer DFS and OS intervals were associated with increased number of CIK treatment cycles(DFS: P = 0.020;OS: P = 0.040). The majority of the patients who benefitted from CIK cell therapy were relatively early-stage TNBC patients.Conclusion: Chemotherapy in combination with adjuvant CIK could be used to lower the relapse and metastasis rate, thus effectively extending the survival time of TNBC patients, especially those at early stages.展开更多
Triple-negative breast cancer(TNBC)is a highly aggressive and metastasizing cancer that has the worst prognosis out of all breast cancer subtypes.The epithelial emesenchymal transition(EMT)and cancer stem cells(CSCs)h...Triple-negative breast cancer(TNBC)is a highly aggressive and metastasizing cancer that has the worst prognosis out of all breast cancer subtypes.The epithelial emesenchymal transition(EMT)and cancer stem cells(CSCs)have been proposed as important mechanisms underlying TNBC metastasis.CDK9 is highly expressed in breast cancer,including TNBC,where it promotes EMT and induces cancer cell stemness.In this study,we have identified a tetrahydroisoquinoline derivative(compound 1)as a potent and selective CDK9-cyclin T1 inhibitor via virtual screening.Interestingly,by targeting the ATP binding site,compound 1 not only inhibited CDK9 activity but also disrupted the CDK9-cyclin T1 proteineprotein interaction(PPI).Mechanistically,compound 1 reversed EMT and reduced the ratio of CSCs by blocking the CDK9-cyclin T1 interaction,leading to reduced TNBC cell proliferation and migration.To date,compound 1 is the first reported tetrahydroisoquinoline-based CDK9-cyclin T1 ATP-competitive inhibitor that also interferes with the interaction between CDK9 and cyclin T1.Compound 1 may serve as a promising scaffold for developing more selective and potent anti-TNBC agents.Our work also provides insight into the role of the CDK9-cyclin T1 PPI on EMT and CSCs and highlights the feasibility and significance of targeting CDK9 for the treatment of TNBC.展开更多
Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherap...Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals,allowing for promising clinical outcomes with intensive treatment.However,the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance,limiting therapeutic efficacy and clinical benefit.Here,we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with timeprogrammed pulsatile release profiles.The implantable device can control the time between drug releases based on its internal microstructure design,which can be used to control dose density.The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar.Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo.Under the same dose density conditions,device-based chemotherapy shows a higher anticancer effect and less toxic response than intratumoral injection.We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose,number of releases,and treatment duration of the dose-dense AC(doxorubicin and cyclophosphamide)regimen preferred for TNBC treatment.Dose density modulation inhibits tumor growth,metastasis,and the expression of drug resistance-related proteins,including p-glycoprotein and breast cancer resistance protein.To the best of our knowledge,local dose-dense chemotherapy has not been reported,and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency.展开更多
Aims:Triple-negative breast cancer patients are commonly treated with combination chemotherapy.Nonetheless,outcomes remain substandard with relapses being of a frequent occurrence.Among the several mechanisms that res...Aims:Triple-negative breast cancer patients are commonly treated with combination chemotherapy.Nonetheless,outcomes remain substandard with relapses being of a frequent occurrence.Among the several mechanisms that result in treatment failure,multidrug resistance,which is mediated by ATP-binding cassette proteins,is the most common.Regardless of the substantial studies conducted on the heterogeneity of cancer types,only a few assays can distinguish the variability in multidrug resistance activity between individual cells.We aim to develop a single-cell assay to study this.Methods:This experiment utilized a microfluidic chip to measure the drug accumulation in single breast cancer cells in order to understand the inhibition of drug efflux properties.Results:Selection of single cells,loading of drugs,and fluorescence measurement for intracellular drug accumulation were all conducted on a microfluidic chip.As a result,measurements of the accumulation of chemotherapeutic drugs(e.g.,daunorubicin and paclitaxel)in single cells in the presence and absence of cyclosporine A were conducted.Parameters such as initial drug accumulation,signal saturation time,and fold-increase of drug with and without the presence cyclosporine A were also tested.Conclusion:The results display that drug accumulation in a single-cell greatly enhanced over its same-cell control because of inhibition by cyclosporine A.Furthermore,this experiment may provide a platform for future liquid biopsy studies to characterize the multidrug resistance activity at a single-cell level.展开更多
Objective:Triple-negative breast cancer(TNBC)is a heterogeneous and aggressive cancer.Although our previous study classified primary TNBC into four subtypes,comprehensive longitudinal investigations are lacking.Method...Objective:Triple-negative breast cancer(TNBC)is a heterogeneous and aggressive cancer.Although our previous study classified primary TNBC into four subtypes,comprehensive longitudinal investigations are lacking.Methods:We assembled a large-scale,real-world cohort comprised of 880 TNBC patients[465 early-stage TNBC(eTNBC)and 415 metastatic TNBC(mTNBC)patients]who were treated at Fudan University Shanghai Cancer Center.The longitudinal dynamics of TNBC subtypes during disease progression were elucidated in this patient cohort.Comprehensive analysis was performed to compare primary and metastatic lesions within specific TNBC subtypes.Results:The recurrence and metastasis rates within 3 years after initial diagnosis in the eTNBC cohort were 10.1%(47/465).The median overall survival(OS)in the mTNBC cohort was 27.2 months[95%confidence interval(CI),24.4–30.2 months],which indicated a poor prognosis.The prognostic significance of the original molecular subtypes in both eTNBC and mTNBC patients was confirmed.Consistent molecular subtypes were maintained in 77.5%of the patients throughout disease progression with the mesenchymal-like(MES)subtype demonstrating a tendency for subtype transition and brain metastasis.Additionally,a precision treatment strategy based on the metastatic MES subtype of target lesions resulted in improved progression-free survival in the FUTURE trial.Conclusions:Our longitudinal study comprehensively revealed the clinical characteristics and survival of patients with the original TNBC subtypes and validated the consistency of most molecular subtypes throughout disease progression.However,we emphasize the major importance of repeat pathologic confirmation of the MES subtype.展开更多
Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production...Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells,playing an important role in the malignant progression of TNBC.This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes(CRGs),and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy.Methods We downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database.Through LASSO Cox regression analysis,we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score(CRRS).We further analyzed the correlation between CRRS and patient prognosis,clinical features,tumor microenvironment(TME)in both high-risk and low-risk groups,and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy.Results We identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model.Kaplan-Meier survival curves,time-dependent receiver operating characteristic curves,and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival,and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.Moreover,patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil,ipatasertib,and paclitaxel.Conclusion We have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs,which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment.Moreover,the key genes within this model may represent potential molecular targets for future therapies of TNBC.展开更多
Objective:To determine the clinical value of combined detection of circulating tumor cells(CTCs)and cell-free DNA(cfDNA)in peripheral blood of patients with triple-negative breast cancer.Method:41 patients with breast...Objective:To determine the clinical value of combined detection of circulating tumor cells(CTCs)and cell-free DNA(cfDNA)in peripheral blood of patients with triple-negative breast cancer.Method:41 patients with breast cancer admitted to the First Central Hospital of Baoding from January 2020 to December 2021 were selected and recruited into the experimental group,42 patients with benign breast cancer admitted during the same period were recruited into the conditional control group,and 41 healthy patients admitted during the same period were recruited into the blank control group.The positive rate of peripheral blood CTCs,the level of cfDNA,and the diagnostic efficacy of peripheral blood CTCs,cfDNA alone and the combination thereof for breast cancer were analyzed.Result:The positive rates of peripheral blood CTCs in the experimental group,the conditional control group,and the blank control group were 43.90%,11.90%,and 9.74%,respectively,and there was significant difference among the groups.The levels of cfDNA in peripheral blood of the experimental group,the conditional control group,and the blank control group were 0.26±0.08 bp,0.17±0.03 bp,and 0.15±0.04 bp,respectively,which were statistically significant.The detection levels of 100 bp hTERT/ng mT1 and 241 bp hTERT/ng-mT1 in the experimental group were significantly higher than those in the conditional control group and the blank control group.The accuracy of peripheral blood CTCs detection in the three groups was 66.21%,the accuracy of cfDA241 bp/100 hp hTERT detection was 80.41%,and the accuracy of combined detection of peripheral blood CTCs and cfDNA was 94.03%.Conclusion:The clinical application of peripheral blood CTCs combined with cfDNA level detection can increase detection accuracy,provide data support for clinicians,and improve the clinical diagnostic effect of triple-negative breast cancer.展开更多
Objectives:This study aimed to reveal the role and possible mechanism of the ubiquitin-conjugating enzyme 2T(UBE2T)in the biological activities of breast cancer stem cells(BCSCs).Methods:The specific protein and gene ...Objectives:This study aimed to reveal the role and possible mechanism of the ubiquitin-conjugating enzyme 2T(UBE2T)in the biological activities of breast cancer stem cells(BCSCs).Methods:The specific protein and gene expression were quantified by Western blotting and quantitative real-time polymerase chain reaction,the proportion of BCSCs was examined by flow cytometry,and the self-renewal and proliferation of BCSCs were verified by serial sphere formation and soft agar.Results:Increasing expression of UBE2T was drastically found in breast cancer than that in adjacent tissues.Furthermore,UBE2T overexpression significantly increased the proportion of BCSCs in breast cancer cells and promoted their self-renewal and proliferation.Silent UBE2T exhibited the opposite functions.UBE2T increased the levels of the mammalian target of rapamycin and the phosphorylated mammalian target of rapamycin.Mammalian target of rapamycin(mTOR)inhibitor rapamycin inhibited the function of UBE2T in BCSCs.Conclusion:UBE2T plays a role in BCSCs through mTOR pathway and may suggest a novel therapeutic strategy for breast cancer.展开更多
BACKGROUND Phosphoglycerate kinase 1(PGK1)has been identified as a possible biomarker for breast cancer(BC)and may play a role in the development and advancement of triple-negative BC(TNBC).AIM To explore the PGK1 and...BACKGROUND Phosphoglycerate kinase 1(PGK1)has been identified as a possible biomarker for breast cancer(BC)and may play a role in the development and advancement of triple-negative BC(TNBC).AIM To explore the PGK1 and BC research status and PGK1 expression and mecha-nism differences among TNBC,non-TNBC,and normal breast tissue.METHODS PGK1 and BC related literature was downloaded from Web of Science Core Co-llection Core Collection.Publication counts,key-word frequency,cooperation networks,and theme trends were analyzed.Normal breast,TNBC,and non-TNBC mRNA data were gathered,and differentially expressed genes obtained.Area under the summary receiver operating characteristic curves,sensitivity and specificity of PGK1 expression were determined.Kaplan Meier revealed PGK1’s prognostic implication.PGK1 co-expressed genes were explored,and Gene Onto-logy,Kyoto Encyclopedia of Genes and Genomes,and Disease Ontology applied.Protein-protein interaction networks were constructed.Hub genes identified.RESULTS PGK1 and BC related publications have surged since 2020,with China leading the way.The most frequent keyword was“Expression”.Collaborative networks were found among co-citations,countries,institutions,and authors.PGK1 expression and BC progression were research hotspots,and PGK1 expression and BC survival were research frontiers.In 16 TNBC vs non-cancerous breast and 15 TNBC vs non-TNBC datasets,PGK1 mRNA levels were higher in 1159 TNBC than 1205 non-cancerous breast cases[standardized mean differences(SMD):0.85,95%confidence interval(95%CI):0.54-1.16,I²=86%,P<0.001].PGK1 expression was higher in 1520 TNBC than 7072 non-TNBC cases(SMD:0.25,95%CI:0.03-0.47,I²=91%,P=0.02).Recurrence free survival was lower in PGK1-high-expression than PGK1-low-expression group(hazard ratio:1.282,P=0.023).PGK1 co-expressed genes were concentrated in ATP metabolic process,HIF-1 signaling,and glycolysis/gluconeogenesis pathways.CONCLUSION PGK1 expression is a research hotspot and frontier direction in the BC field.PGK1 may play a strong role in promoting cancer in TNBC by mediating metabolism and HIF-1 signaling pathways.展开更多
Triple-negative breast cancer(TNBC)is a subtype of breast cancer in which the estrogen receptor and progesterone receptor are not expressed,and human epidermal growth factor receptor 2 is not amplified or overexpresse...Triple-negative breast cancer(TNBC)is a subtype of breast cancer in which the estrogen receptor and progesterone receptor are not expressed,and human epidermal growth factor receptor 2 is not amplified or overexpressed either,which make the clinical diagnosis and treatment very challenging.Molecular imaging can provide an effective way to diagnose TNBC.Upconversion nanoparticles(UCNPs),are a promising new generation of molecular imaging probes.However,UCNPs still need to be improved for tumor-targeting ability and biocompatibility.This study describes a novel probe based on cancer cell membrane-coated upconversion nanoparticles(CCm-UCNPs),owing to the low immunogenicity and homologous-targeting ability of cancer cell membranes,and modified multifunctional UCNPs.This probe exhibits excellent performance in breast cancer molecular classification and TNBC diagnosis through UCL/MRI/PET tri-modality imaging in vivo.By using this probe,MDA-MB-231 was successfully differentiated between MCF-7 tumor models in vivo.Based on the tumor imaging and molecular classification results,the probe is also expected to be modified for drug delivery in the future,contributing to the treatment of TNBC.The combination of nanoparticles with biomimetic cell membranes has the potential for multiple clinical applications.展开更多
Objective:Triple-negative breast cancer(TNBC)is a heterogeneous disease with poor prognosis.Circulating tumor cells(CTCs)are a promising predictor for breast cancer prognoses but their reliability regarding progr...Objective:Triple-negative breast cancer(TNBC)is a heterogeneous disease with poor prognosis.Circulating tumor cells(CTCs)are a promising predictor for breast cancer prognoses but their reliability regarding progression-free survival(PFS)is controversial.We aim to verify their predictive value in TNBC.Methods:In present prospective cohort study,we used the Pep@MNPs method to enumerate CTCs in baseline blood samples from 75 patients with TNBC(taken at inclusion in this study)and analyzed correlations between CTC numbers and outcomes and other clinical parameters.Results:Median PFS was 6.0(range:1.0–25.0)months for the entire cohort,in whom we found no correlations between baseline CTC status and initial tumor stage(P=0.167),tumor grade(P=0.783)or histological type(P=0.084).However,among those getting first-line treatment,baseline CTC status was positively correlated with ratio of peripheral natural killer(NK)cells(P=0.032),presence of lung metastasis(P=0.034)and number of visceral metastatic site(P=0.037).Baseline CTC status was predictive for PFS in first-line TNBC(P=0.033),but not for the cohort as a whole(P=0.118).This prognostic limitation of CTC could be ameliorated by combining CTC and NK cell enumeration(P=0.049).Conclusions:Baseline CTC status was predictive of lung metastasis,peripheral NK cell ratio and PFS in TNBC patients undergoing first-line treatment.We have developed a combined CTC-NK enumeration strategy that allows us to predict PFS in TNBC without any preconditions.展开更多
BACKGROUND Breast cancer is a common malignant tumor that seriously threatens women’s health.Breast cancer stem cell(CSC)-like cell population may be the main factor for breast cancer metastasis.Therefore,targeted th...BACKGROUND Breast cancer is a common malignant tumor that seriously threatens women’s health.Breast cancer stem cell(CSC)-like cell population may be the main factor for breast cancer metastasis.Therefore,targeted therapy for CSCs has great potential significance.Hypoxia-inducible factor is a transcription factor widely expressed in tumors.Studies have shown that down-regulation of the hypoxia signaling pathway inhibits tumor stem cell self-renewal and increases the sensitivity of stem cells to radiotherapy and chemotherapy mediated by hypoxiainducible factor-2α(HIF-2α).However,the specific mechanism remains unclear and further research is necessary.AIM To investigate the effect of HIF-2αdown-regulation on stem cell markers,microsphere formation,and apoptosis in breast cancer cell line MDA-MB-231 under hypoxia and its possible mechanism.METHODS Immunohistochemistry was used to detect the expression of HIF-2αand CD44 in triple-negative breast cancer(TNBC)and non-TNBC tissues.Double-labeling immunofluorescence was applied to detect the co-expression of HIF-2αand CD44 in MDA-MB-231 cells and MCF-7 cells.HIF-2αwas silenced by RNA interference,and the expression of CD44 and transfection efficiency were detected by real-time fluorescent quantitative PCR.Further,flow cytometry,TdT-mediated X-dUTP nick end labeling,and mammosphere formation assays were used to evaluate the effect of HIF-2αon CSCs and apoptosis.The possible mechanisms were analyzed by Western blot.RESULTS The results of immunohistochemistry showed that HIF-2αwas highly expressed in both TNBC and non-TNBC,while the expression of CD44 in different molecular types of breast cancer cells was different.In in vitro experiments,it was found that HIF-2αand CD44 were expressed almost in the same cell.Compared with hypoxia+negative-sequence control,HIF-2αsmall interfering ribonucleic acid transfection can lower the expression of HIF-2αand CD44 mRNA(P<0.05),increase the percentage of apoptotic cells(P<0.05),and resulted in a reduction of CD44+/CD24−population(P<0.05)and mammosphere formation(P<0.05)in hypoxic MDA-MB-231 cells.Western blot analysis revealed that phosphorylated protein-serine-threonine kinase(p-AKT)and phosphorylated mammalian target of rapamycin(p-mTOR)levels in MDA-MB-231 decreased significantly after HIF-2αsilencing(P<0.05).CONCLUSION Down-regulation of HIF-2αexpression can inhibit the stemness of human breast cancer MDA-MB-231 cells and promote apoptosis,and its mechanism may be related to the CD44/phosphoinosmde-3-kinase/AKT/mTOR signaling pathway.展开更多
Background:Triple-negative breast cancer(TNBC)is the most aggressive subtype and occurs in approximately 15%–20%of diagnosed breast cancers.TNBC is characterized by its highly metastatic and recurrent features,as wel...Background:Triple-negative breast cancer(TNBC)is the most aggressive subtype and occurs in approximately 15%–20%of diagnosed breast cancers.TNBC is characterized by its highly metastatic and recurrent features,as well as a lack of specific targets and targeted therapeutics.Epidermal growth factor receptor(EGFR)is highly expressed in a variety of tumors,especially in TNBC.LR004-VC-MMAE is a new EGFR-targeting antibody–drug conjugate produced by our laboratory.This study aimed to evaluate its antitumor activities against EGFR-positive TNBC and further studied its possible mechanism of antitumor action.Methods:LR004-VC-MMAE was prepared by coupling a cytotoxic payload(MMAE)to an anti-EGFR antibody(LR004)via a linker,and the drug-to-antibody ratio(DAR)was analyzed by HIC-HPLC.The gene expression of EGFR in a series of breast cancer cell lines was assessed using a publicly available microarray dataset(GSE41313)and Western blotting.MDA-MB-468 and MDA-MB-231 cells were treated with LR004-VC-MMAE(0,0.0066,0.066,0.66,6.6 nmol/L),and the inhibitory effects of LR004-VC-MMAE on cell proliferation were examined by CCK-8 and colony formation.The migration and invasion capacity of MDA-MB-468 and MDA-MB-231 cells were tested at different LR004-VCMMAE concentrations(2.5 and 5 nmol/L)with wound healing and Transwell invasion assays.Flow cytometric analysis and tumorsphere-forming assays were used to detect the killing effects of LR004-VC-MMAE on cancer stem cells(MDA-MB-468 and MDA-MB-231 cells).The mouse xenograft models were also used to evaluate the antitumor efficacy of LR004-VC-MMAE in vivo.Briefly,BALB/c nude mice were subcutaneously inoculated with MDA-MB-468 or MDAMB-231 cells.Then they were randomly divided into 4 groups(n=6 per group)and treated with PBS,naked LR004(10 mg/kg),LR004-VC-MMAE(10 mg/kg),or doxorubicin,respectively.Tumor sizes and the body weights of mice were measured every 4 d.The effects of LR004-VC-MMAE on apoptosis and cell cycle distribution were analyzed by flow cytometry.Western blotting was used to detect the effects of LR004-VC-MMAE on EGFR,ERK,MEK phosphorylation and tumor stemness marker gene expression.Results:LR004-VC-MMAE with a DAR of 4.02 were obtained.The expression of EGFR was found to be significantly higher in TNBC cells compared with non-TNBC cells(P<0.01).LR004-VC-MMAE inhibited the proliferation of EGFRpositive TNBC cells,and the ICvalues of MDA-MB-468 and MDA-MB-231 cells treated with LR004-VC-MMAE for 72 h were(0.13±0.02)nmol/L and(0.66±0.06)nmol/L,respectively,which were significantly lower than that of cells treated with MMAE[(3.20±0.60)nmol/L,P<0.01,and(6.60±0.50)nmol/L,P<0.001].LR004-VC-MMAE effectively inhibited migration and invasion of MDA-MB-468 and MDA-MB-231 cells.Moreover,LR004-VC-MMAE also killed tumor stem cells in EGFR-positive TNBC cells and impaired their tumorsphere-forming ability.In TNBC xenograft models,LR004-VC-MMAE at 10 mg/kg significantly suppressed tumor growth and achieved complete tumor regression on day 36.Surprisingly,tumor recurrence was not observed until the end of the experiment on day 52.In a mechanistic study,we found that LR004-VC-MMAE significantly induced cell apoptosis and cell cycle arrest at G/M phase in MDAMB-468[(34±5)%vs.(12±2)%,P<0.001]and MDA-MB-231[(27±4)%vs.(18±3)%,P<0.01]cells.LR004-VC-MMAE also inhibited the activation of EGFR signaling and the expression of cancer stemness marker genes such as Oct4,Sox2,KLF4 and EpCAM.Conclusions:LR004-VC-MMAE showed effective antitumor activity by inhibiting the activation of EGFR signaling and the expression of cancer stemness marker genes.It might be a promising therapeutic candidate and provides a potential therapeutic avenue for the treatment of EGFR-positive TNBC.展开更多
基金funded by General Project of Department of Education,Anhui Province(Grant No.KJ2015B016by)the Special Scientific Research Fund of Public Welfare Profession by National Health and Family Planning Commission of the PRC(Grant No.201402003)
文摘Objective:To study the influence of targeted inhibition of Notch1 gene on the killing effects of Paclitaxel on triple-negative breast cancer cells.Methods:The triple-negative [estrogen receptor(ER)/progesterone receptor(PR)/human epidermal growth factor receptor 2(Her2)] breast cancer cell line MDA-MB-231 and ER/PR/HER-2-positive breast cancer cell line MCF-7 were cultured,transfected with Notch1-si RNA-overexpression plasmid and blank plasmid,and treated with different concentrations of paclitaxel,and then the cell proliferation activity and apoptosis rate as well as the m RNA expression of Caspase-3,Caspase-9 and Bcl-2 were determined.Results:Paclitaxel could decrease the MDA-MB-231 and MCF-7 cell proliferation activity as well as Bcl-2 mRNA expression,and increase MDA-MB-231 and MCF-7 cell apoptosis rate as well as Caspase-3 and Caspase-9 mRNA expression in dosedependent manners;with the same dose of paclitaxel treatment,the inhibitory effects on MDAMB-231 cell proliferation activity and Bcl-2 m RNA expression as well as the promoting effects on MDA-MB-231 cell apoptosis and mR NA expression of Caspase-3 and Caspase-9 were weaker than those on MCF-7 cell;after 0.5 μM paclitaxel combined with Notch1-siRNA treatment,MDA-MB-231 cell proliferation activity and Bcl-2 mRNA expression were significantly lower than those after 0.5 μM paclitaxel combined with control plasmid treatment while cell apoptosis rate and mR NA expression of Caspase-3 and Caspase-9 were higher than those after 0.5 μM paclitaxel combined with control plasmid treatment.Conclusions:Targeted inhibition of Notch1 gene may enhance the killing effects of paclitaxel on triple-negative breast cancer cells by up-regulating the expression of Caspase-3 and Caspase-9 and inhibiting the expression of Bcl-2.
基金the National Research Council of Thailand to Rapeewan Settacomkul(No.13/2563)Faculty of Medicine,Thammasat University to Kant Sangpairoj(No.2-20/2563).
文摘Objective:To investigate the effect of the hexane solvent fraction of Halymenia durvillei(HDHE)on triple-negative breast cancer.Methods:The phytochemical profile of HDHE was investigated by GC-MS.The cytotoxicity of HDHE against MDA-MB-231 cells was determined.The apoptotic and autophagic effects of HDHE were analyzed.The expression of molecular markers controlling apoptosis,autophagy,DNA damage,and endoplasmic reticulum(ER)stress was determined.Results:HDHE contains a mixture of fatty acids,mainly hexadecanoic acid.HDHE at a cytotoxic concentration induced apoptotic death of MDA-MB-231 cells through mitochondrial membrane dysfunction,and induction of apoptosis markers,and increased the expression of proteins related to DNA damage response.HDHE also induced the expression of LC-3,a marker of autophagic cell death at a cytotoxic concentration.Moreover,HDHE modulated the expression of ER stress genes.Conclusions:The hexadecanoic acid-enriched extract of Halymenia durvillei promotes apoptosis and autophagy of human triple-negative breast cancer cells.This extract may be further explored as an anticancer agent for triple-negative breast cancer.
文摘Synthetic phosphoethanolamine(Pho-s)is a monophosphoester ester with anti-inflammatory and pro-apoptotic properties.Meclizine chloridrate(MC)is a histamine H1 receptor blocker that is also able to inhibit cellular respiration.However,MC does not inhibit cellular respiration in isolated mitochondria such as antimycin and rotenone.Methyl-β-cyclodextrin(MβCD)belongs to theβ-cyclodextrin family,which is capable of removing cholesterol from the plasma membrane.The aim of this study was to evaluate the proliferative effects of meclizine chloridrate and methyl-β-cyclodextrin compounds associated with synthetic phosphoethanolamine in a triple-negative human breast tumor line,MDA-MB-231 Cell viability of the tumor line and normal cells FN1 was evaluated by MTT colorimetric test;the production of free radicals was determined by lipoperoxidation(LPO)test;and the percentage of cell cycle phases and proliferative index was evaluated by flow cytometry.Cell viability demonstrated a significant decrease with the treatments of MβCD,MC and Pho-s associated with MC.The production of free radicals decreases significantly in all treatments.In addition,a significant increase of DNA fragment and decrease in G0/G1 cell cycle phase were observed in cellular percentage with concentrations of 20 and 30 mM of Pho-s in association with MC and MβCD,respectively.
文摘BACKGROUND The programmed cell death protein 1 inhibitor pembrolizumab has become a key treatment for various cancers,including triple-negative breast cancer.However,it is associated with immune-related adverse events,including rare but serious neurological complications such as Guillain-Barrésyndrome(GBS).GBS is a potentially life-threatening autoimmune disorder characterized by muscle weakness and paralysis.We present a unique case of pembrolizumab-induced GBS to highlight the importance of recognizing this complication and managing it promptly in patients receiving immune checkpoint inhibitors.CASE SUMMARY A 69-year-old woman with a medical history of hypertension,anxiety,depression,and stage IIIB triple-negative breast cancer treated with pembrolizumab,carboplatin,and paclitaxel,presented to the emergency department with a 1-month history of tingling,lower extremity weakness,and shooting pain.Symptoms progressed to global weakness,ascending paralysis,and double vision.Neurological examination revealed significant lower extremity weakness and sensory deficits.Magnetic resonance imaging of the lumbar spine and cerebrospinal fluid analysis confirmed GBS.Initial treatment with intravenous immunoglobulin led to relapse,requiring additional intravenous immunoglobulin and high-dose glucocorticoids.The patient’s condition improved,pembrolizumab therapy was permanently discontinued,and she was discharged to a rehabilitation facility.CONCLUSION Pembrolizumab can induce GBS,necessitating early recognition,prompt diagnosis,and multidisciplinary management to prevent serious complications.
基金funded by the National Natural Science Foundation of China(Grant Nos:62172131 and 81872135)the Outstanding Youth Foundation of Heilongjiang Province of China(Grant No.:YQ2021C026).
文摘Breast cancer remains a leading cause of mortality in women worldwide.Triple-negative breast cancer(TNBC)is a particularly aggressive subtype characterized by rapid progression,poor prognosis,and lack of clear therapeutic targets.In the clinic,delineation of tumor heterogeneity and development of effective drugs continue to pose considerable challenges.Within the scope of our study,high heterogeneity inherent to breast cancer was uncovered based on the landscape constructed from both tumor and healthy breast tissue samples.Notably,TNBC exhibited significant specificity regarding cell proliferation,differentiation,and disease progression.Significant associations between tumor grade,prognosis,and TNBC oncogenes were established via pseudotime trajectory analysis.Consequently,we further performed comprehensive characterization of the TNBC microenvironment.A crucial epithelial subcluster,E8,was identified as highly malignant and strongly associated with tumor cell proliferation in TNBC.Additionally,epithelial-mesenchymal transition(EMT)-associated fibroblast and M2 macrophage subclusters exerted an influence on E8 through cellular interactions,contributing to tumor growth.Characteristic genes in these three cluster cells could therefore serve as potential therapeutic targets for TNBC.The collective findings provided valuable insights that assisted in the screening of a series of therapeutic drugs,such as pelitinib.We further confirmed the anti-cancer effect of pelitinib in an orthotopic 4T1 tumor-bearing mouse model.Overall,our study sheds light on the unique characteristics of TNBC at single-cell resolution and the crucial cell types associated with tumor cell proliferation that may serve as potent tools in the development of effective anti-cancer drugs.
基金supported by Joint Funds for the Innovation of Science and Technology,Fujian Province[Grant number:2020Y9039]Fujian Provincial Health Technology Project[Grant number:2022GGA032].
文摘Objective Triple-negative breast cancer(TNBC)poses a significant challenge for treatment efficacy.CD8+T cells,which are pivotal immune cells,can be effectively analyzed for differential gene expression across diverse cell populations owing to rapid advancements in sequencing technology.By leveraging these genes,our objective was to develop a prognostic model that accurately predicts the prognosis of patients with TNBC and their responsiveness to immunotherapy.Methods Sample information and clinical data of TNBC were sourced from The Cancer Genome Atlas and METABRIC databases.In the initial stage,we identified 67 differentially expressed genes associated with immune response in CD8+T cells.Subsequently,we narrowed our focus to three key genes,namely CXCL13,GBP2,and GZMB,which were used to construct a prognostic model.The accuracy of the model was assessed using the validation set data and receiver operating characteristic(ROC)curves.Furthermore,we employed various methods,including Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway,immune infiltration,and correlation analyses with CD274(PD-L1)to explore the model's predictive efficacy in immunotherapeutic responses.Additionally,we investigated the potential underlying biological pathways that contribute to divergent treatment responses.Results We successfully developed a model capable of predicting the prognosis of patients with TNBC.The areas under the curve(AUC)values for the 1-,3-,and 5-year survival predictions were 0.618,0.652,and 0.826,respectively.Employing this risk model,we stratified the samples into high-and low-risk groups.Through KEGG enrichment analysis,we observed that the high-risk group predominantly exhibited enrichment in metabolism-related pathways such as drug and chlorophyll metabolism,whereas the low-risk group demonstrated significant enrichment in cytokine pathways.Furthermore,immune landscape analysis revealed noteworthy variations between(PD-L1)expression and risk scores,indicating that our model effectively predicted the response of patients to immune-based treatments.Conclusion Our study demonstrates the potential of CXCL13,GBP2,and GZMB as prognostic indicators of clinical outcomes and immunotherapy responses in patients with TNBC.These findings provide valuable insights and novel avenues for developing immunotherapeutic approaches targeting TNBC.
基金supported by the Student’s Platform for Innovation and Entrepreneurship Training Program, China (Grant No. 201510062001)
文摘Objective: Vasculogenic mimicry(VM) channels that are lined by tumor cells are a functional blood supply in malignant tumors.However, the role of VM-initiating cells remains poorly understood. Cancer stem-like cells(CSCs) are positively correlated with VM. In this study, triple-negative breast cancer(TNBC) enriched with CSCs was used to investigate the relationship between VM and CSCs.Methods: The expression of several CSC markers was detected by immunohistochemistry in 100 human breast cancer samples.The clinical significance of CSC markers and the relationship between VM, CSCs, breast cancer subtypes, and VM-associated proteins were analyzed. CD133+ and ALDH+ human and mouse TNBC cells were isolated by FACS to examine the ability of VM formation and the spatial relationship between VM and CSCs.Results: CSCs were associated with TNBC subtype and VM in human invasive breast cancer. CSCs in TNBC MDA-MB-231 cells formed more VM channels and expressed more molecules promoting VM than the non-TNBC MCF-7 cells in vitro. MDA-MB-231 cells that encircled VM channels on Matrigel expressed CD133. Moreover, CSCs were located near VM channels in the 3D reconstructed blood supply system in human TNBC grafts. The CD133+ and ALDH+ cells isolated from TA2 mouse breast cancer formed more VM channels in vivo.Conclusions: CSCs line VM channels directly. Additionally, CSCs provide more VM-related molecules to synergize VM formation. The signaling pathways that control CSC differentiation may also be potential treatment targets for TNBC.
文摘Objective: To examine the efficacy and safety of a sequential combination of chemotherapy and autologous cytokine-induced killer(CIK) cell treatment in triple-negative breast cancer(TNBC) patients.Methods: A total of 294 post-surgery TNBC patients participated in the research from January 1, 2009 to January 1, 2015. After adjuvant chemotherapy, autologous CIK cells were introduced in 147 cases(CIK group), while adjuvant chemotherapy alone was used to treat the remaining 147 cases(control group). The major endpoints of the investigation were the disease-free survival(DFS) and overall survival(OS). Additionally, the side effects of the treatment were evaluated.Results: In the CIK group, the DFS and OS intervals of the patients were significantly longer than those of the control group(DFS:P = 0.047;OS: P = 0.007). The multivariate analysis demonstrated that the TNM(tumor-node-metastasis) stage and adjuvant CIK treatment were independent prognostic factors for both DFS [hazard ratio(HR)= 0.520, 95% confidence interval(CI):0.271-0.998, P = 0.049;HR = 1.449, 95% CI:1.118-1.877, P = 0.005, respectively] and OS(HR=0.414, 95% CI:0.190-0.903, P = 0.027;HR= 1.581, 95% CI:1.204-2.077, P = 0.001, respectively) in patients with TNBC. Additionally, longer DFS and OS intervals were associated with increased number of CIK treatment cycles(DFS: P = 0.020;OS: P = 0.040). The majority of the patients who benefitted from CIK cell therapy were relatively early-stage TNBC patients.Conclusion: Chemotherapy in combination with adjuvant CIK could be used to lower the relapse and metastasis rate, thus effectively extending the survival time of TNBC patients, especially those at early stages.
基金This work was supported by the Health and Medical Research Fund(No.HMRF/14150561)the National Natural Science Foundation of China(No.201575121 and 21775131)+3 种基金the Hong Kong Baptist University Century Club Sponsorship Scheme 2020,Teaching Development Fund(No.TDG/1920/02)the Science and Technology Development Fund,Macao SAR,China(File no.0072/2018/A2 and 0007/2020/A1)SKLQRCM(UM)-2020-2022the University of Macao,China(MYRG2019e00002eICMS).
文摘Triple-negative breast cancer(TNBC)is a highly aggressive and metastasizing cancer that has the worst prognosis out of all breast cancer subtypes.The epithelial emesenchymal transition(EMT)and cancer stem cells(CSCs)have been proposed as important mechanisms underlying TNBC metastasis.CDK9 is highly expressed in breast cancer,including TNBC,where it promotes EMT and induces cancer cell stemness.In this study,we have identified a tetrahydroisoquinoline derivative(compound 1)as a potent and selective CDK9-cyclin T1 inhibitor via virtual screening.Interestingly,by targeting the ATP binding site,compound 1 not only inhibited CDK9 activity but also disrupted the CDK9-cyclin T1 proteineprotein interaction(PPI).Mechanistically,compound 1 reversed EMT and reduced the ratio of CSCs by blocking the CDK9-cyclin T1 interaction,leading to reduced TNBC cell proliferation and migration.To date,compound 1 is the first reported tetrahydroisoquinoline-based CDK9-cyclin T1 ATP-competitive inhibitor that also interferes with the interaction between CDK9 and cyclin T1.Compound 1 may serve as a promising scaffold for developing more selective and potent anti-TNBC agents.Our work also provides insight into the role of the CDK9-cyclin T1 PPI on EMT and CSCs and highlights the feasibility and significance of targeting CDK9 for the treatment of TNBC.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(MSIT)(No.2021R1A2C2012808)Technology Innovation Program(Alchemist Project)(No.20012378)funded by the Ministry of Trade,Industry&Energy(MOTIE),South Korea.
文摘Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals,allowing for promising clinical outcomes with intensive treatment.However,the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance,limiting therapeutic efficacy and clinical benefit.Here,we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with timeprogrammed pulsatile release profiles.The implantable device can control the time between drug releases based on its internal microstructure design,which can be used to control dose density.The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar.Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo.Under the same dose density conditions,device-based chemotherapy shows a higher anticancer effect and less toxic response than intratumoral injection.We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose,number of releases,and treatment duration of the dose-dense AC(doxorubicin and cyclophosphamide)regimen preferred for TNBC treatment.Dose density modulation inhibits tumor growth,metastasis,and the expression of drug resistance-related proteins,including p-glycoprotein and breast cancer resistance protein.To the best of our knowledge,local dose-dense chemotherapy has not been reported,and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency.
文摘Aims:Triple-negative breast cancer patients are commonly treated with combination chemotherapy.Nonetheless,outcomes remain substandard with relapses being of a frequent occurrence.Among the several mechanisms that result in treatment failure,multidrug resistance,which is mediated by ATP-binding cassette proteins,is the most common.Regardless of the substantial studies conducted on the heterogeneity of cancer types,only a few assays can distinguish the variability in multidrug resistance activity between individual cells.We aim to develop a single-cell assay to study this.Methods:This experiment utilized a microfluidic chip to measure the drug accumulation in single breast cancer cells in order to understand the inhibition of drug efflux properties.Results:Selection of single cells,loading of drugs,and fluorescence measurement for intracellular drug accumulation were all conducted on a microfluidic chip.As a result,measurements of the accumulation of chemotherapeutic drugs(e.g.,daunorubicin and paclitaxel)in single cells in the presence and absence of cyclosporine A were conducted.Parameters such as initial drug accumulation,signal saturation time,and fold-increase of drug with and without the presence cyclosporine A were also tested.Conclusion:The results display that drug accumulation in a single-cell greatly enhanced over its same-cell control because of inhibition by cyclosporine A.Furthermore,this experiment may provide a platform for future liquid biopsy studies to characterize the multidrug resistance activity at a single-cell level.
基金This work was supported by grants from the National Natural Science Foundation of China(Grant No.82103039)the Program of Shanghai Academic/Technology Research Leader(Grant No.20XD1421100)the Wu Jieping Medical Foundation(Grant No.320.6750.2021-10-64).
文摘Objective:Triple-negative breast cancer(TNBC)is a heterogeneous and aggressive cancer.Although our previous study classified primary TNBC into four subtypes,comprehensive longitudinal investigations are lacking.Methods:We assembled a large-scale,real-world cohort comprised of 880 TNBC patients[465 early-stage TNBC(eTNBC)and 415 metastatic TNBC(mTNBC)patients]who were treated at Fudan University Shanghai Cancer Center.The longitudinal dynamics of TNBC subtypes during disease progression were elucidated in this patient cohort.Comprehensive analysis was performed to compare primary and metastatic lesions within specific TNBC subtypes.Results:The recurrence and metastasis rates within 3 years after initial diagnosis in the eTNBC cohort were 10.1%(47/465).The median overall survival(OS)in the mTNBC cohort was 27.2 months[95%confidence interval(CI),24.4–30.2 months],which indicated a poor prognosis.The prognostic significance of the original molecular subtypes in both eTNBC and mTNBC patients was confirmed.Consistent molecular subtypes were maintained in 77.5%of the patients throughout disease progression with the mesenchymal-like(MES)subtype demonstrating a tendency for subtype transition and brain metastasis.Additionally,a precision treatment strategy based on the metastatic MES subtype of target lesions resulted in improved progression-free survival in the FUTURE trial.Conclusions:Our longitudinal study comprehensively revealed the clinical characteristics and survival of patients with the original TNBC subtypes and validated the consistency of most molecular subtypes throughout disease progression.However,we emphasize the major importance of repeat pathologic confirmation of the MES subtype.
文摘Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells,playing an important role in the malignant progression of TNBC.This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes(CRGs),and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy.Methods We downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database.Through LASSO Cox regression analysis,we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score(CRRS).We further analyzed the correlation between CRRS and patient prognosis,clinical features,tumor microenvironment(TME)in both high-risk and low-risk groups,and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy.Results We identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model.Kaplan-Meier survival curves,time-dependent receiver operating characteristic curves,and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival,and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.Moreover,patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil,ipatasertib,and paclitaxel.Conclusion We have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs,which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment.Moreover,the key genes within this model may represent potential molecular targets for future therapies of TNBC.
基金This present study was financially supported by Baoding City Science and Technology Plan project(2041ZF084)Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province.
文摘Objective:To determine the clinical value of combined detection of circulating tumor cells(CTCs)and cell-free DNA(cfDNA)in peripheral blood of patients with triple-negative breast cancer.Method:41 patients with breast cancer admitted to the First Central Hospital of Baoding from January 2020 to December 2021 were selected and recruited into the experimental group,42 patients with benign breast cancer admitted during the same period were recruited into the conditional control group,and 41 healthy patients admitted during the same period were recruited into the blank control group.The positive rate of peripheral blood CTCs,the level of cfDNA,and the diagnostic efficacy of peripheral blood CTCs,cfDNA alone and the combination thereof for breast cancer were analyzed.Result:The positive rates of peripheral blood CTCs in the experimental group,the conditional control group,and the blank control group were 43.90%,11.90%,and 9.74%,respectively,and there was significant difference among the groups.The levels of cfDNA in peripheral blood of the experimental group,the conditional control group,and the blank control group were 0.26±0.08 bp,0.17±0.03 bp,and 0.15±0.04 bp,respectively,which were statistically significant.The detection levels of 100 bp hTERT/ng mT1 and 241 bp hTERT/ng-mT1 in the experimental group were significantly higher than those in the conditional control group and the blank control group.The accuracy of peripheral blood CTCs detection in the three groups was 66.21%,the accuracy of cfDA241 bp/100 hp hTERT detection was 80.41%,and the accuracy of combined detection of peripheral blood CTCs and cfDNA was 94.03%.Conclusion:The clinical application of peripheral blood CTCs combined with cfDNA level detection can increase detection accuracy,provide data support for clinicians,and improve the clinical diagnostic effect of triple-negative breast cancer.
基金This research was partly supported by the Fundamental Research Funds of Shandong University(21510078614097)the Shandong Natural Science Foundation General Project(ZR2022MC093).
文摘Objectives:This study aimed to reveal the role and possible mechanism of the ubiquitin-conjugating enzyme 2T(UBE2T)in the biological activities of breast cancer stem cells(BCSCs).Methods:The specific protein and gene expression were quantified by Western blotting and quantitative real-time polymerase chain reaction,the proportion of BCSCs was examined by flow cytometry,and the self-renewal and proliferation of BCSCs were verified by serial sphere formation and soft agar.Results:Increasing expression of UBE2T was drastically found in breast cancer than that in adjacent tissues.Furthermore,UBE2T overexpression significantly increased the proportion of BCSCs in breast cancer cells and promoted their self-renewal and proliferation.Silent UBE2T exhibited the opposite functions.UBE2T increased the levels of the mammalian target of rapamycin and the phosphorylated mammalian target of rapamycin.Mammalian target of rapamycin(mTOR)inhibitor rapamycin inhibited the function of UBE2T in BCSCs.Conclusion:UBE2T plays a role in BCSCs through mTOR pathway and may suggest a novel therapeutic strategy for breast cancer.
基金Supported by the Guangxi Zhuang Autonomous Region Health Commission Scientific Research Project,No.Z-A20220530.
文摘BACKGROUND Phosphoglycerate kinase 1(PGK1)has been identified as a possible biomarker for breast cancer(BC)and may play a role in the development and advancement of triple-negative BC(TNBC).AIM To explore the PGK1 and BC research status and PGK1 expression and mecha-nism differences among TNBC,non-TNBC,and normal breast tissue.METHODS PGK1 and BC related literature was downloaded from Web of Science Core Co-llection Core Collection.Publication counts,key-word frequency,cooperation networks,and theme trends were analyzed.Normal breast,TNBC,and non-TNBC mRNA data were gathered,and differentially expressed genes obtained.Area under the summary receiver operating characteristic curves,sensitivity and specificity of PGK1 expression were determined.Kaplan Meier revealed PGK1’s prognostic implication.PGK1 co-expressed genes were explored,and Gene Onto-logy,Kyoto Encyclopedia of Genes and Genomes,and Disease Ontology applied.Protein-protein interaction networks were constructed.Hub genes identified.RESULTS PGK1 and BC related publications have surged since 2020,with China leading the way.The most frequent keyword was“Expression”.Collaborative networks were found among co-citations,countries,institutions,and authors.PGK1 expression and BC progression were research hotspots,and PGK1 expression and BC survival were research frontiers.In 16 TNBC vs non-cancerous breast and 15 TNBC vs non-TNBC datasets,PGK1 mRNA levels were higher in 1159 TNBC than 1205 non-cancerous breast cases[standardized mean differences(SMD):0.85,95%confidence interval(95%CI):0.54-1.16,I²=86%,P<0.001].PGK1 expression was higher in 1520 TNBC than 7072 non-TNBC cases(SMD:0.25,95%CI:0.03-0.47,I²=91%,P=0.02).Recurrence free survival was lower in PGK1-high-expression than PGK1-low-expression group(hazard ratio:1.282,P=0.023).PGK1 co-expressed genes were concentrated in ATP metabolic process,HIF-1 signaling,and glycolysis/gluconeogenesis pathways.CONCLUSION PGK1 expression is a research hotspot and frontier direction in the BC field.PGK1 may play a strong role in promoting cancer in TNBC by mediating metabolism and HIF-1 signaling pathways.
基金the National Natural Science Foundation of China(Nos.81630049 and 81501532).
文摘Triple-negative breast cancer(TNBC)is a subtype of breast cancer in which the estrogen receptor and progesterone receptor are not expressed,and human epidermal growth factor receptor 2 is not amplified or overexpressed either,which make the clinical diagnosis and treatment very challenging.Molecular imaging can provide an effective way to diagnose TNBC.Upconversion nanoparticles(UCNPs),are a promising new generation of molecular imaging probes.However,UCNPs still need to be improved for tumor-targeting ability and biocompatibility.This study describes a novel probe based on cancer cell membrane-coated upconversion nanoparticles(CCm-UCNPs),owing to the low immunogenicity and homologous-targeting ability of cancer cell membranes,and modified multifunctional UCNPs.This probe exhibits excellent performance in breast cancer molecular classification and TNBC diagnosis through UCL/MRI/PET tri-modality imaging in vivo.By using this probe,MDA-MB-231 was successfully differentiated between MCF-7 tumor models in vivo.Based on the tumor imaging and molecular classification results,the probe is also expected to be modified for drug delivery in the future,contributing to the treatment of TNBC.The combination of nanoparticles with biomimetic cell membranes has the potential for multiple clinical applications.
基金supported by National Natural Science Foundation of China (No.81502269 and No.21273051)a grant from the Chinese Academy of Sciences (No.XDA09030306)
文摘Objective:Triple-negative breast cancer(TNBC)is a heterogeneous disease with poor prognosis.Circulating tumor cells(CTCs)are a promising predictor for breast cancer prognoses but their reliability regarding progression-free survival(PFS)is controversial.We aim to verify their predictive value in TNBC.Methods:In present prospective cohort study,we used the Pep@MNPs method to enumerate CTCs in baseline blood samples from 75 patients with TNBC(taken at inclusion in this study)and analyzed correlations between CTC numbers and outcomes and other clinical parameters.Results:Median PFS was 6.0(range:1.0–25.0)months for the entire cohort,in whom we found no correlations between baseline CTC status and initial tumor stage(P=0.167),tumor grade(P=0.783)or histological type(P=0.084).However,among those getting first-line treatment,baseline CTC status was positively correlated with ratio of peripheral natural killer(NK)cells(P=0.032),presence of lung metastasis(P=0.034)and number of visceral metastatic site(P=0.037).Baseline CTC status was predictive for PFS in first-line TNBC(P=0.033),but not for the cohort as a whole(P=0.118).This prognostic limitation of CTC could be ameliorated by combining CTC and NK cell enumeration(P=0.049).Conclusions:Baseline CTC status was predictive of lung metastasis,peripheral NK cell ratio and PFS in TNBC patients undergoing first-line treatment.We have developed a combined CTC-NK enumeration strategy that allows us to predict PFS in TNBC without any preconditions.
文摘BACKGROUND Breast cancer is a common malignant tumor that seriously threatens women’s health.Breast cancer stem cell(CSC)-like cell population may be the main factor for breast cancer metastasis.Therefore,targeted therapy for CSCs has great potential significance.Hypoxia-inducible factor is a transcription factor widely expressed in tumors.Studies have shown that down-regulation of the hypoxia signaling pathway inhibits tumor stem cell self-renewal and increases the sensitivity of stem cells to radiotherapy and chemotherapy mediated by hypoxiainducible factor-2α(HIF-2α).However,the specific mechanism remains unclear and further research is necessary.AIM To investigate the effect of HIF-2αdown-regulation on stem cell markers,microsphere formation,and apoptosis in breast cancer cell line MDA-MB-231 under hypoxia and its possible mechanism.METHODS Immunohistochemistry was used to detect the expression of HIF-2αand CD44 in triple-negative breast cancer(TNBC)and non-TNBC tissues.Double-labeling immunofluorescence was applied to detect the co-expression of HIF-2αand CD44 in MDA-MB-231 cells and MCF-7 cells.HIF-2αwas silenced by RNA interference,and the expression of CD44 and transfection efficiency were detected by real-time fluorescent quantitative PCR.Further,flow cytometry,TdT-mediated X-dUTP nick end labeling,and mammosphere formation assays were used to evaluate the effect of HIF-2αon CSCs and apoptosis.The possible mechanisms were analyzed by Western blot.RESULTS The results of immunohistochemistry showed that HIF-2αwas highly expressed in both TNBC and non-TNBC,while the expression of CD44 in different molecular types of breast cancer cells was different.In in vitro experiments,it was found that HIF-2αand CD44 were expressed almost in the same cell.Compared with hypoxia+negative-sequence control,HIF-2αsmall interfering ribonucleic acid transfection can lower the expression of HIF-2αand CD44 mRNA(P<0.05),increase the percentage of apoptotic cells(P<0.05),and resulted in a reduction of CD44+/CD24−population(P<0.05)and mammosphere formation(P<0.05)in hypoxic MDA-MB-231 cells.Western blot analysis revealed that phosphorylated protein-serine-threonine kinase(p-AKT)and phosphorylated mammalian target of rapamycin(p-mTOR)levels in MDA-MB-231 decreased significantly after HIF-2αsilencing(P<0.05).CONCLUSION Down-regulation of HIF-2αexpression can inhibit the stemness of human breast cancer MDA-MB-231 cells and promote apoptosis,and its mechanism may be related to the CD44/phosphoinosmde-3-kinase/AKT/mTOR signaling pathway.
基金supported by the CAMS Innovation Fund for Medical Sciences(CIFMS)(2021-1-I2M-026)the Beijing Natural Science Foundation(7202133)the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2021-RW350-002)。
文摘Background:Triple-negative breast cancer(TNBC)is the most aggressive subtype and occurs in approximately 15%–20%of diagnosed breast cancers.TNBC is characterized by its highly metastatic and recurrent features,as well as a lack of specific targets and targeted therapeutics.Epidermal growth factor receptor(EGFR)is highly expressed in a variety of tumors,especially in TNBC.LR004-VC-MMAE is a new EGFR-targeting antibody–drug conjugate produced by our laboratory.This study aimed to evaluate its antitumor activities against EGFR-positive TNBC and further studied its possible mechanism of antitumor action.Methods:LR004-VC-MMAE was prepared by coupling a cytotoxic payload(MMAE)to an anti-EGFR antibody(LR004)via a linker,and the drug-to-antibody ratio(DAR)was analyzed by HIC-HPLC.The gene expression of EGFR in a series of breast cancer cell lines was assessed using a publicly available microarray dataset(GSE41313)and Western blotting.MDA-MB-468 and MDA-MB-231 cells were treated with LR004-VC-MMAE(0,0.0066,0.066,0.66,6.6 nmol/L),and the inhibitory effects of LR004-VC-MMAE on cell proliferation were examined by CCK-8 and colony formation.The migration and invasion capacity of MDA-MB-468 and MDA-MB-231 cells were tested at different LR004-VCMMAE concentrations(2.5 and 5 nmol/L)with wound healing and Transwell invasion assays.Flow cytometric analysis and tumorsphere-forming assays were used to detect the killing effects of LR004-VC-MMAE on cancer stem cells(MDA-MB-468 and MDA-MB-231 cells).The mouse xenograft models were also used to evaluate the antitumor efficacy of LR004-VC-MMAE in vivo.Briefly,BALB/c nude mice were subcutaneously inoculated with MDA-MB-468 or MDAMB-231 cells.Then they were randomly divided into 4 groups(n=6 per group)and treated with PBS,naked LR004(10 mg/kg),LR004-VC-MMAE(10 mg/kg),or doxorubicin,respectively.Tumor sizes and the body weights of mice were measured every 4 d.The effects of LR004-VC-MMAE on apoptosis and cell cycle distribution were analyzed by flow cytometry.Western blotting was used to detect the effects of LR004-VC-MMAE on EGFR,ERK,MEK phosphorylation and tumor stemness marker gene expression.Results:LR004-VC-MMAE with a DAR of 4.02 were obtained.The expression of EGFR was found to be significantly higher in TNBC cells compared with non-TNBC cells(P<0.01).LR004-VC-MMAE inhibited the proliferation of EGFRpositive TNBC cells,and the ICvalues of MDA-MB-468 and MDA-MB-231 cells treated with LR004-VC-MMAE for 72 h were(0.13±0.02)nmol/L and(0.66±0.06)nmol/L,respectively,which were significantly lower than that of cells treated with MMAE[(3.20±0.60)nmol/L,P<0.01,and(6.60±0.50)nmol/L,P<0.001].LR004-VC-MMAE effectively inhibited migration and invasion of MDA-MB-468 and MDA-MB-231 cells.Moreover,LR004-VC-MMAE also killed tumor stem cells in EGFR-positive TNBC cells and impaired their tumorsphere-forming ability.In TNBC xenograft models,LR004-VC-MMAE at 10 mg/kg significantly suppressed tumor growth and achieved complete tumor regression on day 36.Surprisingly,tumor recurrence was not observed until the end of the experiment on day 52.In a mechanistic study,we found that LR004-VC-MMAE significantly induced cell apoptosis and cell cycle arrest at G/M phase in MDAMB-468[(34±5)%vs.(12±2)%,P<0.001]and MDA-MB-231[(27±4)%vs.(18±3)%,P<0.01]cells.LR004-VC-MMAE also inhibited the activation of EGFR signaling and the expression of cancer stemness marker genes such as Oct4,Sox2,KLF4 and EpCAM.Conclusions:LR004-VC-MMAE showed effective antitumor activity by inhibiting the activation of EGFR signaling and the expression of cancer stemness marker genes.It might be a promising therapeutic candidate and provides a potential therapeutic avenue for the treatment of EGFR-positive TNBC.