In order to induce chromosome translocation between wheat chromosomes and chromosome 5Lr of Leymus racemosus, the mi- crosporocytes during meiosis of T. aestivum-L. racemosus disomic addition line DA5Lr were irradiate...In order to induce chromosome translocation between wheat chromosomes and chromosome 5Lr of Leymus racemosus, the mi- crosporocytes during meiosis of T. aestivum-L. racemosus disomic addition line DA5Lr were irradiated by 60Co γ-rays 800 R (100 R/min). Before flowering, the treated spikes were emasculated and bagged. After 2-3 d, the emasculated flowerets were pollinated using pollens from T. aestivum cv. Chinese Spring. One plant with two translocation chromosomes involved in both the long and short arm of 5Lr was detected in the M1 by GISH. The plant was crossed with line DA5Lr, and its progenies with one 5Lr and two translocation chromosomes were analyzed for chromosome pairing behavior in their pollen mother cells (PMCs). A cross-shaped configuration at diplonema and Z-shaped or ring-shaped quadrivalent configuration at metaphase I were observed, indicating that the two translocation chromosomes were reciprocal translocation. Chromosome C-banding indicated that the wheat chromosomes involved in the reciprocal translocation belonged to A- or D-genome. Fluorescence in situ hybridization using pSc119.2 and pAs1 as the probe found that only pAs1 signals were present in the wheat chromosome segments of the two translocation chromosomes. Combining these results, the reciprocal chromosomal translocation was designated as T7DS·5LrL/5LrS·7DL. The two transloca- tion chromosomes were found to be transmitted together in the gametes of heterozygous reciprocal translocation plants with the transmission ratios of 59.4% in the female gametes and 83.9% in the male gametes, revealing preferential pollen transmission. In the self-fertilized progenies of the heterozygous reciprocal translocation, a line with the homozygous translocation line with a pair of translocation chromosome T7DS·5LrL was identified. The T7DS·5Lr translocation line was highly resistant to wheat scab and can be used as a potential and new source in wheat improvement for scab resistance.展开更多
Leymus racemosus is highly resistant to wheat scab (Fusarum head bright). The transfer of scab resistant gene from L. racemosus to Triticum aestivum is of great significance for broadening the base of wheat resistance...Leymus racemosus is highly resistant to wheat scab (Fusarum head bright). The transfer of scab resistant gene from L. racemosus to Triticum aestivum is of great significance for broadening the base of wheat resistance. In the present study, the pollen of T. aestivum-L. racemosus monosomic addition line with scab resistance was treated by irradiation with 1200 R 60Co-γ-rays prior to pollinating to emasculated wheat cv. Mianyang 85-45. Nine plants with a telocentric chromosome 7Lr#1S were observed in M1, and one ditelosomic substitution line 7Lr#1S was selected from selfcrossing progenies and confirmed by chromosome C-banding and GISH. Furthermore, a co-dominant EST-SSR marker CINAU 31 was employed to identify this substitution line. A pair of chromosome 7A of common wheat were found to be replaced by a pair of telocentric chromosome 7Lr#1S, and further investigation showed that chromosome configuration of the substitution line at MI of PMCs after GISH was 17.50○II W + 2.19 IIW + 0.42II7Lr#1S + 1.08 I7Lr#1S + 0.69 IW. Two telocentric chromosomes paired as a bivalent in 59.7% of PMCs. Abnormal chromosome behaviors of telocentric chromosomes were observed in part of PMCs at anaphase I and telophase I, including the moving of two telocentric chromosomes to the same pole, lagging and earlier separation of their sister chromatid. All these abnormal behaviors can be grouped into three distinct types of tetrads according to different numbers of 7Lr#1S in their daughter cells and various micronucleus in some tetrads. However, due to the high transmission frequency of the female and male gametes with a 7Lr#1S, 84% of the selfcrossing progeny plants had ditelosomic substitution. The substitution line showed high resistance to wheat scab in a successive two-year test both in the greenhouse and field; hence, the line will be particularly valuable for alien gene mapping, small fragment translocation induction and telosomic cytological behavior analysis.展开更多
大赖草对赤霉病具有较好的抗性,将大赖草赤霉病抗性基因转入普通小麦,对拓宽小麦赤霉病抗性基础有重要意义。本研究在获得抗赤霉病普通小麦-大赖草异附加系基础上,采用1 200 R ^(60)Co-γ射线处理小麦-大赖草二体附加系DA7Lr花粉,授予...大赖草对赤霉病具有较好的抗性,将大赖草赤霉病抗性基因转入普通小麦,对拓宽小麦赤霉病抗性基础有重要意义。本研究在获得抗赤霉病普通小麦-大赖草异附加系基础上,采用1 200 R ^(60)Co-γ射线处理小麦-大赖草二体附加系DA7Lr花粉,授予已去雄的普通小麦中国春,对其后代(M_1)种子根尖细胞有丝分裂中期染色体进行GISH分析,获得了1株具有1条普通小麦-大赖草易位染色体的植株,让其自交,对自交后代中具有2条易位染色体植株的花粉母细胞减数分裂中期Ⅰ进行观察,发现2条易位染色体形成了稳定的环状二价体,表明该植株为纯合体。利用顺序GISH-双色FISH分析,结合C-分带、小麦D基因组专化探针Oligo-pAs1-2和B基因组专化探针Oligo-pSc119.2-2,进一步鉴定出该普通小麦-大赖草易位系为T3AS·3AL-7Lr#1S,且筛选出了可追踪该易位系的3个EST-STS分子标记BE591127、BQ168298和BE591737。该易位系的育成为小麦赤霉病遗传改良提供了新种质。展开更多
基金supported by the National High-Tech Research and Deve-lopment Program of China (Grant No. 2006AA10Z1F6)Programme of Introducing Talents of Discipline to Universities (Grant No. B08025)
文摘In order to induce chromosome translocation between wheat chromosomes and chromosome 5Lr of Leymus racemosus, the mi- crosporocytes during meiosis of T. aestivum-L. racemosus disomic addition line DA5Lr were irradiated by 60Co γ-rays 800 R (100 R/min). Before flowering, the treated spikes were emasculated and bagged. After 2-3 d, the emasculated flowerets were pollinated using pollens from T. aestivum cv. Chinese Spring. One plant with two translocation chromosomes involved in both the long and short arm of 5Lr was detected in the M1 by GISH. The plant was crossed with line DA5Lr, and its progenies with one 5Lr and two translocation chromosomes were analyzed for chromosome pairing behavior in their pollen mother cells (PMCs). A cross-shaped configuration at diplonema and Z-shaped or ring-shaped quadrivalent configuration at metaphase I were observed, indicating that the two translocation chromosomes were reciprocal translocation. Chromosome C-banding indicated that the wheat chromosomes involved in the reciprocal translocation belonged to A- or D-genome. Fluorescence in situ hybridization using pSc119.2 and pAs1 as the probe found that only pAs1 signals were present in the wheat chromosome segments of the two translocation chromosomes. Combining these results, the reciprocal chromosomal translocation was designated as T7DS·5LrL/5LrS·7DL. The two transloca- tion chromosomes were found to be transmitted together in the gametes of heterozygous reciprocal translocation plants with the transmission ratios of 59.4% in the female gametes and 83.9% in the male gametes, revealing preferential pollen transmission. In the self-fertilized progenies of the heterozygous reciprocal translocation, a line with the homozygous translocation line with a pair of translocation chromosome T7DS·5LrL was identified. The T7DS·5Lr translocation line was highly resistant to wheat scab and can be used as a potential and new source in wheat improvement for scab resistance.
基金the National Hi-Tech Research and Development Program of China (Grant No. 2006AA10Z1F6)National Natural Science Foundation of Jiangsu Province (Grant No. BK2006720)+1 种基金High Tech Research Plan of Jiangsu Province (Grant No. BG2005310)Program of Introducing Talents of Discipline to Universities (Grant No. B08025)
文摘Leymus racemosus is highly resistant to wheat scab (Fusarum head bright). The transfer of scab resistant gene from L. racemosus to Triticum aestivum is of great significance for broadening the base of wheat resistance. In the present study, the pollen of T. aestivum-L. racemosus monosomic addition line with scab resistance was treated by irradiation with 1200 R 60Co-γ-rays prior to pollinating to emasculated wheat cv. Mianyang 85-45. Nine plants with a telocentric chromosome 7Lr#1S were observed in M1, and one ditelosomic substitution line 7Lr#1S was selected from selfcrossing progenies and confirmed by chromosome C-banding and GISH. Furthermore, a co-dominant EST-SSR marker CINAU 31 was employed to identify this substitution line. A pair of chromosome 7A of common wheat were found to be replaced by a pair of telocentric chromosome 7Lr#1S, and further investigation showed that chromosome configuration of the substitution line at MI of PMCs after GISH was 17.50○II W + 2.19 IIW + 0.42II7Lr#1S + 1.08 I7Lr#1S + 0.69 IW. Two telocentric chromosomes paired as a bivalent in 59.7% of PMCs. Abnormal chromosome behaviors of telocentric chromosomes were observed in part of PMCs at anaphase I and telophase I, including the moving of two telocentric chromosomes to the same pole, lagging and earlier separation of their sister chromatid. All these abnormal behaviors can be grouped into three distinct types of tetrads according to different numbers of 7Lr#1S in their daughter cells and various micronucleus in some tetrads. However, due to the high transmission frequency of the female and male gametes with a 7Lr#1S, 84% of the selfcrossing progeny plants had ditelosomic substitution. The substitution line showed high resistance to wheat scab in a successive two-year test both in the greenhouse and field; hence, the line will be particularly valuable for alien gene mapping, small fragment translocation induction and telosomic cytological behavior analysis.
文摘大赖草对赤霉病具有较好的抗性,将大赖草赤霉病抗性基因转入普通小麦,对拓宽小麦赤霉病抗性基础有重要意义。本研究在获得抗赤霉病普通小麦-大赖草异附加系基础上,采用1 200 R ^(60)Co-γ射线处理小麦-大赖草二体附加系DA7Lr花粉,授予已去雄的普通小麦中国春,对其后代(M_1)种子根尖细胞有丝分裂中期染色体进行GISH分析,获得了1株具有1条普通小麦-大赖草易位染色体的植株,让其自交,对自交后代中具有2条易位染色体植株的花粉母细胞减数分裂中期Ⅰ进行观察,发现2条易位染色体形成了稳定的环状二价体,表明该植株为纯合体。利用顺序GISH-双色FISH分析,结合C-分带、小麦D基因组专化探针Oligo-pAs1-2和B基因组专化探针Oligo-pSc119.2-2,进一步鉴定出该普通小麦-大赖草易位系为T3AS·3AL-7Lr#1S,且筛选出了可追踪该易位系的3个EST-STS分子标记BE591127、BQ168298和BE591737。该易位系的育成为小麦赤霉病遗传改良提供了新种质。