期刊文献+
共找到2,334篇文章
< 1 2 117 >
每页显示 20 50 100
Physiological and Transcriptome Analysis Illuminates the Molecular Mechanisms of the Drought Resistance Improved by Alginate Oligosaccharides in Triticum aestivum L.
1
作者 Yunhong Zhang Yonghui Yang Jiawei Mao 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期185-212,共28页
Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with ... Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture. 展开更多
关键词 Alginate oligosaccharides triticum aestivum l. drought resistance TRANSCRIPTOMIC physiological analysis
下载PDF
条锈病对小麦(Triticum aestivum L.)叶片光合功能及光合功能蛋白D1表达的影响 被引量:17
2
作者 沈喜 李红玉 +3 位作者 贾秋珍 冯汉青 李敏权 粱厚果 《生态学报》 CAS CSCD 北大核心 2008年第2期669-676,共8页
测定了小麦(Triticum aestivum L.)感染小麦条锈病后的光合常数,以及叶绿素含量、类囊体膜光合电子传递速率和光合反应中心D1蛋白的变化。实验显示,条锈病侵染导致感病小麦叶片净光合速率与叶绿素含量降低;抗病小麦经侵染后净光合速率... 测定了小麦(Triticum aestivum L.)感染小麦条锈病后的光合常数,以及叶绿素含量、类囊体膜光合电子传递速率和光合反应中心D1蛋白的变化。实验显示,条锈病侵染导致感病小麦叶片净光合速率与叶绿素含量降低;抗病小麦经侵染后净光合速率却有恢复过程,叶绿素含量先降后升。此外,感病小麦叶片被侵染后全链电子传递速率受到抑制,PSII电子传递速率的变化与全链电子传递速率的变化趋势相似,但PSI电子传递速率受到的影响较小;抗病小麦小麦叶片被侵染后电子传递速率所受影响较小。同时发现,病程中,感病和抗病小麦PSII的光合反应中心D1蛋白含量变化总是与PSII电子传递速率的变化类似,推测D1蛋白的表达量变化是引起PSII电子传递活性与全链电子传递速率变化的主要因素之一。 展开更多
关键词 小麦(triticum aestivum l.) 条锈病 光合作用 电子传递 PSII D1蛋白
下载PDF
土壤外源Cd和Pb复合污染对小麦(Triticum aestivum L.)根系植物络合素和谷胱甘肽合成的影响 被引量:12
3
作者 孙琴 王超 《生态环境》 CSCD 北大核心 2008年第5期1833-1838,共6页
采用盆栽实验研究了土壤外源Cd和Pb复合污染对小麦(Triticum aestivum L.)根系植物络合素(PCs)和谷胱甘肽(GSH)合成的影响。结果表明,土壤外源较高浓度Cd处理(≥3mg·kg-1)和高浓度Pb处理(630mg·kg-1)均抑制了小麦的生长,Cd和P... 采用盆栽实验研究了土壤外源Cd和Pb复合污染对小麦(Triticum aestivum L.)根系植物络合素(PCs)和谷胱甘肽(GSH)合成的影响。结果表明,土壤外源较高浓度Cd处理(≥3mg·kg-1)和高浓度Pb处理(630mg·kg-1)均抑制了小麦的生长,Cd和Pb复合处理加重了Cd的毒性;Pb处理小麦根内未检出PCs,仅检出GSH,但GSH并没有随Pb处理浓度的增加而增加。随Cd处理浓度(≥1mg·kg-1)的增加,小麦根内PCs和GSH含量显著增加;Cd和Pb复合处理增加了小麦根内PCs的合成水平,而降低了GSH的合成水平。回归分析显示,Cd及Cd和Pb复合污染小麦根内PCs的含量与小麦地上部生物量的抑制率保持相当好的线性关系。结果显示,PCs可用于评价土壤环境中Cd及Cd和Pb复合污染的毒性。 展开更多
关键词 复合污染 小麦根系 植物络合素 谷胱甘肽
下载PDF
水肥不同层次组合对冬小麦(Triticum aestivum L.)氮磷养分有效性和产量效应的影响 被引量:3
4
作者 沈玉芳 李世清 邵明安 《生态学报》 CAS CSCD 北大核心 2008年第6期2698-2706,共9页
以肥熟土垫旱耕人为土为供试土样,用分层土柱试验法研究了不同层次水分、氮、磷组合对冬小麦(Triticum aestivum L.)氮磷养分有效性和产量效应的影响。结果表明,不同土层水肥处理的氮磷养分有效性和产量效应差异显著。氮素养分有... 以肥熟土垫旱耕人为土为供试土样,用分层土柱试验法研究了不同层次水分、氮、磷组合对冬小麦(Triticum aestivum L.)氮磷养分有效性和产量效应的影响。结果表明,不同土层水肥处理的氮磷养分有效性和产量效应差异显著。氮素养分有效性在4.73%-41.19%之间,磷素养分有效性在4.11%-13.58%之间。对氮素养分有效性,单施氮整体湿润时(0-90cm土层湿润)较上干下湿(0-30cm土层干旱胁迫,30-90cm土层湿润)低4.87%,而氮磷配施在整体湿润时较上干下湿高6.38%,差异均达显著水平;对磷素养分有效性,氮磷配施时,在整体湿润时较上干下湿增加5.01T(P〈0.05)。从不同施肥土层看,氮素养分有效性均以0-90cm土层施肥处理最高;对氮磷配施处理,在上干下湿时分别比0-30cm、30-60cm和60-90cm土层施肥处理高9.5%、10.1%和20.2个%;对磷素养分有效性,整体湿润处理,以0-30cm土层施肥显著高于其它土层施肥处理。单施氮或磷,上干下湿时氮磷养分的产量效应均高于整体湿润处理,但氮磷配施时均以整体湿润处理较高;从不同土层施肥看,氮素养分的产量效应以0-90cm土层施肥最高;磷素养分的产量效应则表现为0-90cm与0-30cm土层施肥处理显著高于30-60cm和60-90cm土层施肥处理。分析0-90cm土层残留硝态氮和有效磷累积量可以看出,不同处理土壤残留硝态氮含量存在显著差异,上干下湿时CK、单施氮、单施磷和氮磷配施土壤残留硝态氮分别比整体湿润相应施肥处理增加125.8%、20.1%、21.9%和2.1%;不同处理有效磷差异性不及硝态氮明显。整体看,在两种水分状况下,均以0-90cm和0-30cm土层施肥有利于提高氮磷养分对冬小麦的有效性和产量效应,减少硝态氮和有效磷在土壤中的残留累积。考虑到生产上的可操作性,仍以施人0-30cm土层最适,说明即使在上千下湿情况下,保证上层有效养分供应仍具重要作用。 展开更多
关键词 水肥空间组合 氮有效性 磷有效性 产量效应 冬小麦(triticum aestivum l.)
下载PDF
普通小麦(Triticum aestivum L.)T型细胞质雄性不育系及其保持系的线粒体DNA比较研究(英文) 被引量:3
5
作者 刘大钧 谢纬武 +1 位作者 王斌 吴敏生 《作物学报》 CAS CSCD 北大核心 1995年第5期551-555,共5页
mtDNAs of T type wheat cytoplasmic male sterile lines Ning Drawf 14(ND14) and their maintainers Ning Drawf 13 (ND13) were isolated and digested completely with restriction endonucleases EcoRI, PstI, EcoRV, BamHI. The ... mtDNAs of T type wheat cytoplasmic male sterile lines Ning Drawf 14(ND14) and their maintainers Ning Drawf 13 (ND13) were isolated and digested completely with restriction endonucleases EcoRI, PstI, EcoRV, BamHI. The results revealed that the molecular structure of mtDNAs from ND14 and ND13 cytoplasms were significantly deviated. The mitochondrial genomic difference between CMS line and maintainers were uncovered by southern hybridization with probes of 18S+5S rRNA、atpA genes from wheat and pea mitochondria, respectively. Due to the complexity of mtDNA and no proof of protein difference, it has not yet been demonstrated whether mtDNA difference of Normal and Male Sterile Cytoplasm of wheat is associated with CMS. 展开更多
关键词 小麦 T型细胞质 系配套 线粒体 DNA
下载PDF
Identification of Triticum aestivum-Haynaldia villosa Translocation Line T6BS·6BL-2VS 被引量:2
6
作者 陈全战 张边江 +2 位作者 周峰 吴梅 华春 《Agricultural Science & Technology》 CAS 2008年第4期47-50,共4页
[Objective] The aim of experiment was to provide a new germplasm for wheat breeding by further using desirable genes in 2V chromosome of Haynaldia villosa.[Method] Through hybridization between common wheat(Triticum a... [Objective] The aim of experiment was to provide a new germplasm for wheat breeding by further using desirable genes in 2V chromosome of Haynaldia villosa.[Method] Through hybridization between common wheat(Triticum aestivum)-Haynaldia villosa disomic substitution line and common wheat Nonglin26-3C chromosome of Aegilops triuncialis disomic addition line,the analysis methods such as chromosome C-banding,genomic in situ hybridization and molecular marker technique were comprehensively applied and combined characters investigation.[Result] The wheat-Haynaldia villosa translocation line(T6BS·6BL-2VS)was selected from hybrid progenies to conduct characters investigation,which found some bristles on glume ridge of T6BS·6BL-2VS.[Conclusion] The translocation line induced by gametocidal chromosome was a small segment translocation line and the gene of bristle on glume ridge of Haynaldia villosa was located between the middle and the terminal of 2VS. 展开更多
关键词 Common wheat(triticum aestivum) Haynaldia villosa TRANSlOCATION C-BANDING Fluorescent in SITU hybridization
下载PDF
碱胁迫对小麦(Triticum aestivum Linn)叶片代谢过程的影响 被引量:11
7
作者 郭瑞 周际 +1 位作者 杨帆 李峰 《中国农业科学》 CAS CSCD 北大核心 2017年第2期250-259,共10页
【目的】阐明碱胁迫对小麦叶片离子平衡、初生及次生代谢产物的影响及其涉及的代谢途径,讨论其生长代谢变化规律及应答机制。【方法】以普通小麦(Triticum aestivum Linn)为材料,采用盆栽试验利用Na HCO_3﹕Na2CO_3=1﹕1混合模拟不同盐... 【目的】阐明碱胁迫对小麦叶片离子平衡、初生及次生代谢产物的影响及其涉及的代谢途径,讨论其生长代谢变化规律及应答机制。【方法】以普通小麦(Triticum aestivum Linn)为材料,采用盆栽试验利用Na HCO_3﹕Na2CO_3=1﹕1混合模拟不同盐度碱胁迫条件,在苗期连续胁迫12 d后测定叶片生长、光合、离子和代谢产物。【结果】当碱胁迫强度超过小麦自身调节能力时,叶片中Na^+含量剧增,加上高p H危害,造成叶绿体遭到破坏、叶绿素含量降低、光系统Ⅱ活性受抑制、气孔导度及碳同化能力急剧下降,最终导致生长率降低。碱胁迫下Na^+大量增加的同时阴离子明显减少,造成叶片内负电荷亏缺和p H不稳定,导致离子平衡遭到破坏,进而引起一系列代谢途径的协变反应。通过GC-MS检测出73个代谢物,主要包括碳水化合物、氨基酸、有机酸等,其中,分别有25和48个代谢物在中度和重度碱胁迫下发生明显改变。主成分分析(PCA)结果显示全部样本均分布在95%的置信区间内,2个主成分得分达到89%。单因素方差分析表明,与对照组比较,在高浓度碱胁迫下发生的显著性变化明显高于低浓度碱胁迫。碱胁迫导致5种参与三羧酸(TCA)循环和6种参与糖酵解途径的代谢物含量明显降低,且引起大部分氨基酸(谷氨酸、丙氨酸、γ-氨基丁酸、天冬氨酸等)和糖类及多元醇(果糖、蔗糖、塔罗糖、肌醇等)大量降低。与此同时,碱胁迫诱导小麦有机酸大量积累,随胁迫强度的增加而上升,这种现象可能是小麦被动的适应调节过程,主要用于维持离子平衡并调节p H浓度。【结论】碱胁迫引起了TCA循环、糖酵解途径、卡尔文循环、莽草酸途径、细胞膜脂代谢、转氨基反应和γ-氨基丁酸(GABA)途径等代谢网络系统广泛变化,暗示了碱胁迫不仅对糖类、氨基酸类、脂肪和蛋白质合成代谢过程造成负面影响,而且限制C-N转变过程影响植物对N素的利用,造成营养匮乏抑制植物生长发育。 展开更多
关键词 普通小麦 碱胁迫 叶片 生长特性 光合特性 代谢组
下载PDF
Agronomic Trait and Protein Component of F_2 Hybrid Originated from Intergeneric Somatic Hybridization Between Triticum aestivum and Agropyron elongatum 被引量:4
8
作者 向凤宁 冯保民 +1 位作者 夏光敏 陈惠民 《Acta Botanica Sinica》 CSCD 2001年第3期232-237,共6页
Protoplasts derived from common wheat (Triticum aestivum L,. cv. Jinan 177) were fused with UV-treated protoplasts of Agropyron elongatum. (Host) Nevski by PEG method, and fertile asymmetric somatic hybrid plants rese... Protoplasts derived from common wheat (Triticum aestivum L,. cv. Jinan 177) were fused with UV-treated protoplasts of Agropyron elongatum. (Host) Nevski by PEG method, and fertile asymmetric somatic hybrid plants resembling wheat morphology were obtained. The F-2 hybrid plants could be divided into 3 types according to their morphology. Type I hybrids had high and loosely standing stalks with big spikes and grains. Type ii hybrids were dwarf and compact in shape with high tillering ability and smaller spikes. Type III hybrids were similar to type I as a whole but had more compact and erect spikes. All the F-2 hybrid lines were superior to wheat in seed protein content, although some difference existed between themselves. Protein analysis of immature embryos and flag leaves from hybrids by two-dimensional electrophoresis showed that they possessed characteristic proteins of both parents and some new proteins. There existed also some different kinds of proteins in different lines. 展开更多
关键词 F-2 somatic hybrid plant triticum aestivum Agropyron elongatum two-dimensional electrophoresis crude protein protein component
下载PDF
普通小麦(Triticum aestivum)和毛穗赖草(Leymus paboanus)的杂交,杂种细胞无性系的建立及植株再生 被引量:4
9
作者 张学勇 董玉琛 +1 位作者 杨欣明 李翠钗 《作物学报》 CAS CSCD 北大核心 1992年第4期258-265,T002,共9页
以3个普通小麦品种富可(Fuhuko)、中国春(Chinese Spring)及小偃759和毛穗赖草杂交,发现三个品种都可与毛穗赖草杂交,其中Fuhuko×L.paboanus平均结实率高达17.6%,杂种只有发育不全的幼胚而无胚乳。对杂种幼胚在N_6+1—2mg/11BA+0.... 以3个普通小麦品种富可(Fuhuko)、中国春(Chinese Spring)及小偃759和毛穗赖草杂交,发现三个品种都可与毛穗赖草杂交,其中Fuhuko×L.paboanus平均结实率高达17.6%,杂种只有发育不全的幼胚而无胚乳。对杂种幼胚在N_6+1—2mg/11BA+0.5mgGA_3或MS(其中NH_4NO_3含量降低一半)附加1mg/1IBA的培养基上进行保姆培养,部分幼胚发育成完整的小植株,大部分幼胚死亡,并且在MS(1/2NH_4NO_3)培养基上,两个胚(Fuhuko×L.psboanus)形成质量很差的小愈伤组织,对其进行改良培养,建立了两个杂种胚性无性细胞系(一个生长很快,另一个相对较慢)。杂种愈伤组织在附加1mg/1IBA的MS或N_6培养基以及附加(0.5mg NAA+0.5mgKT)/1的MS(1/2NH_4NO_3)分化培养基上均可高频率产生再生植株。同时发现:1.将MS培养基中硝酸铵的含量降低一半,可显著提高植株再生频率;2.降低分化培养基中生长素(如IBA,NAA)的含量,加入少量的细胞激动素(如0.5 mg/1KT)可促使大量胚状体萌发,产生正常植株,使绿苗中90.0%以上的植株来自胚状体发生途径。细胞学观察表明:幼胚直接成苗的杂种植株体细胞染色体数很稳定,2n=63+1B,和预期结果相符;而杂种愈伤组组再生植株染色体数极不稳定,不同株间染色体数不同,即使同一根尖中不同的细胞染色体数也有很大差异。 展开更多
关键词 小麦 毛穗赖草 杂种 植株再生
下载PDF
Hybrid Effects on the Release of Phytosiderophores in Winter Wheat (Triticum aestivum) 被引量:2
10
作者 于福同 张爱民 张福锁 《Acta Botanica Sinica》 CSCD 2002年第1期63-66,共4页
Fe (iron) deficiency is an important nutritional problem particularly in crop plants grown on calcareous soils. Phytosiderophore (PS) release has been suggested to be linked to the ability of graminaceous species and ... Fe (iron) deficiency is an important nutritional problem particularly in crop plants grown on calcareous soils. Phytosiderophore (PS) release has been suggested to be linked to the ability of graminaceous species and genotypes to overcome Fe_deficiency chlorosis. Thus, enhancing PS release is a critical step to improve Fe nutrition of plants grown on Fe stressed soils. The heterosis of PS release rate in common wheat was studied by analyzing PS release from roots of three hybrids and their four parents grown in Fe_deficiency nutrient solution under controlled environmental conditions. PS release rates were determined at two or three day intervals after onset of Fe_deficiency symptoms by the measurement of Fe mobilizing capacity of root exudates from freshly precipitated FeⅢ hydroxide. High amounts of phytosiderophores were released from the roots of all wheat genotypes under Fe_deficiency, and the amount progressively increased with the development of Fe_deficiency chlorosis. The results revealed that the hybrids had more sensitive feedback systems which secreted more phytosiderophores under Fe_deficiency than their parents. By analyzing the relationship between each hybrid and its parents, it was also found that the parents should be selected on the basis of the rate of PS release and the combining ability by using the heterosis to improve Fe utilizability of crop plants. 展开更多
关键词 triticum aestivum PHYTOSIDEROPHORE Fe_deficiency HETEROSIS
下载PDF
Occurrences of Yttrium in Soil and Its Potential Impacts on Paddy Rice Triticum aestivum 被引量:1
11
作者 冯秀娟 张素贞 +3 位作者 朱易春 马彩云 潘阳 高咪 《Agricultural Science & Technology》 CAS 2013年第12期1783-1787,共5页
[Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Trit... [Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Triticum aestivum)) together with the occurrences of Y in soils were investigated to assess its ecotoxicological effects on plant. [Method]Y solutions with various concentrations were sprinkled on soil sam- ples, which were well mixed and then put into culture dishes to culture paddy rice seeds for further evaluation. [Result] The results indicated that 25-100 mg/kg Y treatments significantly increased the biomass (total weight, root weight, shoot weight and leaf weight), chlorophyll (CHL) content and protein content of paddy rice, whereas 200-800 mg/kg Y treatments had a converse effect. Similarly, biomarker for the antioxidant systems including superoxide dismutases (SOD), peroxidases (POD) and catalases (CAT) all exhibited similar trends in both shoots and roots of paddy rice. At the same time, the malonaldehyde (MDA) content increased at from 25 to 100 mg/kg and decreased with concentrations of Y from 100 to 800 mg/kg in both shoots and roots of paddy rice. This indicated that Y could stimulate the growth of plant at low concentration, but inhibit the growth at relatively high concen- tration. [Conclusion] The levels of Y were 641+49, 328_+16 and 473_+40 mg/kg in soils collected from mining area, farmland and navel orange orchard respectively. The levels of Y in the investigated area were higher than the benefit level (100 mg/kg), which could cause low biomass as well as low activity of SOD, POD and CAT in paddy rice. Therefore, a more careful use of Y is necessary in crop management. 展开更多
关键词 Yttrium (Y) Oxidative stress Dismutases (SOD) Peroxidases (POD) Catalases (CAT) Paddy rice (Yttrium (Y) Oxidative stress Dismutases (SOD) Per- oxidases (POD) Catalases (CAT) Paddy rice triticum aestivum))
下载PDF
Mutation Classification and Genetic Diversity Analysis of Triticum aestivum ssp. yunnanense King Based on Agronomic Traits
12
作者 王志伟 杨金华 +3 位作者 程加省 胡银星 程耿 于亚雄 《Agricultural Science & Technology》 CAS 2010年第11期119-123,共5页
[Objective] The present study was conducted to provide basis for researches on breeding new wheat varieties and conserving rare species in Yunnan Province.[Method] 29 materials of Triticum aestivum ssp.yunnanense King... [Objective] The present study was conducted to provide basis for researches on breeding new wheat varieties and conserving rare species in Yunnan Province.[Method] 29 materials of Triticum aestivum ssp.yunnanense King(Yunnan Hulled Wheat)were taken for the research on classification and genetic diversity analysis based on 14 agronomic traits.[Result] Yunnan hulled wheat A14 could be an unnamed white seed variety,and other 28 materials were divided into 10 named mutation types;Yunnan hulled wheat was rich in variability of agronomic traits,in which the coefficient of variance(CV)of sterile spikelet number was the largest(22.59%),while the CV of earing period was the lowest(3.71%);the diversity indexes of seven qualitative characters ranged from 1.55-2.04.Moreover,the 29 Yunnan hulled wheat could be divided into 3 clusters by the UPGMA analysis.However,Yunnan hulled wheat varieties originating from similar mutation types did not completely cluster together.The genetic relationship was relatively close among A13(YT-35),A14(YT-36)and A21(YT-37),but the faster genetic relationship was observed between them and other Yunnan hulled wheat varieties.[Conclusion] Yunnan hulled wheat had an extensive genetic diversity in agronomic traits. 展开更多
关键词 triticum aestivum ssp.Yunnanense King(Yunnan hulled wheat) Agronomic traits Genetic diversity
下载PDF
磷素对小麦(Triticum aestivum L.)淀粉粒微观特性的影响及其形成机理 被引量:8
13
作者 张润琪 付凯勇 +3 位作者 李超 祖赛超 李春艳 李诚 《中国农业科学》 CAS CSCD 北大核心 2017年第22期4235-4246,共12页
【目的】磷是小麦生长发育必需的三大营养元素之一。小麦淀粉粒表面存在微孔和微通道结构,对淀粉的生物合成和理化特性有重要影响。探索磷素对淀粉粒微观特性的影响及其形成机理,可为研究不同磷素条件下小麦淀粉的生物合成及品质变化机... 【目的】磷是小麦生长发育必需的三大营养元素之一。小麦淀粉粒表面存在微孔和微通道结构,对淀粉的生物合成和理化特性有重要影响。探索磷素对淀粉粒微观特性的影响及其形成机理,可为研究不同磷素条件下小麦淀粉的生物合成及品质变化机理提供新途径。【方法】采用新疆冬小麦主栽品种新冬23号为参试材料,设置3种施磷水平,不施磷(CK:P_2O_5 0 kg·hm^(-2))、常规施磷(CP:P_2O_5 105 kg·hm^(-2))和高量施磷(HP:P_2O_5 210 kg·hm^(-2)),所用肥料为重过磷酸钙,于小麦播种后160 d(大约5%的植株已返青)开沟条施,并于花后7、14、21、28和35 d取样。通过扫描电镜观察不同磷素水平成熟期淀粉粒微观结构以及淀粉粒在内源(种子萌发)和外源淀粉酶(淀粉葡萄糖苷酶)酶解条件下的形态变化,同时测定淀粉粒经淀粉葡萄糖苷酶水解后产生的还原糖浓度;通过激光共焦显微镜观察淀粉粒微通道结构的变化;通过实时荧光定量PCR研究籽粒发育过程中淀粉合成酶与降解酶基因表达量,并通过原位杂交技术对淀粉降解酶关键基因进行定位。【结果】不同磷素条件下小麦胚乳淀粉粒形态未发生明显改变,但CP处理条件下更容易观察到淀粉粒的微孔结构,且其内部显示出较多荧光;另外,籽粒发芽6 d时,CP处理条件下淀粉粒表面的孔洞最多。经外源淀粉葡萄糖苷酶处理后,HP和CP处理条件下更容易观察到被水解成两半的A型淀粉粒,同时其产生的还原糖浓度也显著提高,这说明不同磷素条件下淀粉粒表面和高部微观结构发生了变化。常规施磷条件下,小麦胚乳淀粉合成与降解相关酶基因的表达量显著高于不施磷和高量施磷。施磷条件下胚乳外缘amy4、bam1和bam5转录水平提高,且常规施磷条件下转录水平更高。【结论】常规施磷条件下胚乳边缘淀粉酶基因转录水平的提高可能影响了淀粉合成酶和降解酶之间的平衡,进而影响淀粉粒的合成和微观特性变化。 展开更多
关键词 普通小麦 淀粉粒 磷素 微观结构 基因表达 原位杂交
下载PDF
Molecular Characterization and Expression Analysis of TaZFP15, a C_2H_2-Type Zinc Finger Transcription Factor Gene in Wheat (Triticum aestivum L.) 被引量:22
14
作者 SUN Zhao-hua DING Chang-huan +1 位作者 LI Xiao-juan XIAO Kai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第1期31-42,共12页
Based on sequencing of part clones in a root subtractive cDNA library, an expressed sequence tag (EST) sharing high similarity to a rice C2H2 zinc finger transcription factor (ZFP15) was obtained in wheat. Through... Based on sequencing of part clones in a root subtractive cDNA library, an expressed sequence tag (EST) sharing high similarity to a rice C2H2 zinc finger transcription factor (ZFP15) was obtained in wheat. Through bioinformatics approach, the wheat C2H2-type ZFP gene referred to TaZFP15 has been identified and characterized. As a full-length cDNA of 670 bp, TaZFP15 has an open reading frame of 408 bp and encodes a 135-aa polypeptide. TaZFP15 contains two C2H2 zinc finger domains and each one has a conserved motif QALGGH. The typical L-box, generally identified in the C2H2 type transcription factors, has also been found in TaZFP15. Phylogenetic analysis suggested that TaZFP15 shares high similarities with rice ZFP15 (GenBank accession no. AY286473), maize ZFP (GenBank accession no. NM_001159094) and a subset of other zinc-finger transcription factor genes in plant species. The expression of TaZFP15 was up-regulated by starved-Pi stress, showing a pattern to be gradually elevated along with the progression of the Pi-stress in a 23-h treatment regime. Similarly, the transcripts of TaZFP15 in roots were also induced by nitrogen deficiency, and abiotic stresses of drought and salinity. No responses of TaZFP15 were detected in roots to nutrition deficiencies of P, Zn, and Ca, and the external treatment of abscisic acid (ABA). TaZFP15 could be specifically amplified in genome A, B, and D, and without variability in the sequences, suggesting that TaZFP15 has multi-copies in the homologous hexaploid species. Transgenic analysis in tobacco revealed that up-regulation of TaZFP15 could significantly improve plant dry mass accumulation via increasing the plant phosphorus acquisition capacity under Pi-deficiency condition. The results suggested that TaZFP15 is involved in mediation of signal transductions of diverse external stresses. 展开更多
关键词 triticum aestivum l. zinc-finger transcription factor gene nutrition deficiency abiotic stress expression pattern
下载PDF
QTL Mapping for Drought Tolerance at Stages of Germination and Seedling in Wheat (Triticum aestivum L.) Using a DH Population 被引量:25
15
作者 HAOZhuan-fang CHANGXiao-ping +3 位作者 GUOXiao-jian JINGRui-lian LIRun-zhi JIAJi-zeng 《Agricultural Sciences in China》 CAS CSCD 2003年第9期943-949,共7页
Drought is a major constraint in many wheat( Triticum aestivum L.) production regions. Quantitative trait loci (QTLs) conditioning drought tolerance at stages of germination and seedling in wheat were identified in... Drought is a major constraint in many wheat( Triticum aestivum L.) production regions. Quantitative trait loci (QTLs) conditioning drought tolerance at stages of germination and seedling in wheat were identified in a double haploid (DH) population derived from the cross, Hanxuan10×Lumai14, using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Interval mapping analysis revealed that QTLs for drought tolerance at germination stage were located on chromosomes 1B, 2B, 5A, 6B, 7A and 7B, respectively, and the most effective QTL was mapped on chromosome 2B, explaining 27.2% of phenotypic variance. The QTLs for drought tolerance at seedling stage were located on 1B, 3B and 7B, respectively, and the most effective QTL was mapped on chromosome 3B, explaining 21.6% of phenotypic variance. Their positions were different from those of QTLs conferring drought tolerance at germination stage, indicating that drought tolerance at germination stage and seedling stage was controlled by different loci. Most of the identified QTLs explained 18% or more of phenotypic variance for drought tolerance at germination and seedling stage, and would be useful in future for marker assisted selection programs and cultivar improvement. 展开更多
关键词 Wheat ( triticum aestivum l.) Quantitative trait loci (QTls) Drought tolerance Germination stage Seedling stage
下载PDF
Effects of reduced nitrogen and suitable soil moisture on wheat(Triticum aestivum L.) rhizosphere soil microbiological,biochemical properties and yield in the Huanghuai Plain,China 被引量:8
16
作者 ZHOU Su-mei ZHANG Man +4 位作者 ZHANG Ke-ke YANG Xi-wen HE De-xian YIN Jun WANG Chen-yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第1期234-250,共17页
Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen applica... Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen application rates on wheat(Triticum aestivum L.) rhizosphere soil microorganisms and enzyme activities, and their temporal variations in relation to soil fertility under supplemental irrigation conditions in a fluvo-aquic region. For this, we established a split-plot experiment for two consecutive years(2014–2015 and 2015–2016) in the field with three levels of soil moisture: water deficit to no irrigation(W1), medium irrigation to(70±5)% of soil relative moisture after jointing stage(W2), and adequate irrigation to(80±5)% of soil relative moisture after jointing stage(W3);and three levels of nitrogen: 0 kg ha^–1(N1), 195 kg ha^–1(N2) and 270 kg ha^–1(N3). Results showed that irrigation and nitrogen application significantly increased rhizosphere microorganisms and enzyme activities. Soil microbiological properties showed different trends in response to N level;the highest values of bacteria, protease, catalase and phosphatase appeared in N2, while the highest levels of actinobacteria, fungi and urease were observed in N3. In addition, these items performed best under medium irrigation(W2) relative to W1 and W3;particularly the maximum microorganism(bacteria, actinobacteria and fungi) amounts appeared at W2, 5.37×10^7 and 6.35×10^7 CFUs g^–1 higher than those at W3 in 2014–2015 and 2015–2016, respectively;and these changes were similar in both growing seasons. Microbe-related parameters fluctuated over time but their seasonality did not hamper the irrigation and fertilization-induced effects. Further, the highest grain yields of 13 309.2 and 12 885.7 kg ha^–1 were both obtained at W2 N2 in 2014–2015 and 2015–2016, respectively. The selected properties, soil microorganisms and enzymes, were significantly correlated with wheat yield and proved to be valuable indicators of soil quality. These results clearly demonstrated that the combined treatment(W2 N2) significantly improved soil microbiological properties, soil fertility and wheat yield on the Huanghuai Plain, China. 展开更多
关键词 suitable soil moisture nitrogen-reduction rhizosphere soil MICROORGANISMS rhizosphere soil enzyme activity winter wheat(triticum aestivum l.)
下载PDF
Growth traits and nitrogen assimilation-associated physiological parameters of wheat(Triticum aestivum L.) under low and high N conditions 被引量:6
17
作者 ZHANG Fei-fei GAO Si +3 位作者 ZHAO Yuan-yuan ZHAO Xiao-lei LIU Xiao-man XIAO Kai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第7期1295-1308,共14页
In this study, 14 wheat cultivars with contrasting yield and N use efficiency (NUE) were used to investigate the agronomic and NUE-related traits, and the N assimilation-associated enzyme activities under low and hi... In this study, 14 wheat cultivars with contrasting yield and N use efficiency (NUE) were used to investigate the agronomic and NUE-related traits, and the N assimilation-associated enzyme activities under low and high N conditions. Under deficient-N, the cultivars with high N uptake efficiency (UpE) and high N utilization efficiency (UtE) exhibited higher plant biomass, yields, and N contents than those with medium and low NUEs. The high UpE cultivars accumulated more N than other NUE type cultivars. Under sufficient-N, the tested cultivars showed similar patterns in biomass, yield, and N content to those under deficient-N, but the varietal variations in above traits were smaller. In addition, the high UpE cultivars displayed much more of root biomass and larger of root length, surface area, and volume than other NUE type cultivars, indicating that the root morphological traits under N deprivation are closely associated with the plant biomass through its improvement of the N acquisition. The high UtE cultivars showed higher activities of nitrate reductase (NR), nitrite reductase (NIR), and gluta- mine synthetase (GS) at stages of seediling, heading and filling than other NUE type cultivars under both low and high N conditions. Moreover, the high UpE and UtE cultivars also displayed higher photosynthetic rate under deficient-N than the medium and low NUE cultivars. Together, our results indicated that the tested wheat cultivars possess dramatically genetic variations in biomass, yield, and NUE. The root morphological traits and the N assimilation enzymatic acitivities play critical roles in regulating N accumulation and internal N translocation under the N-starvation stress, respectively. They can be used as morphological and biochemical references for evaluation of UpE and UtE in wheat. 展开更多
关键词 wheat triticum aestivum l.) low and high N biomass yield nitrogen use efficiency root morphological traits N assimilzation-associated enzyme photosynthetic rate
下载PDF
TaARR1, a cytokinin response regulator gene in Triticum aestivum, is essential in plant N starvation tolerance via regulating the N acquisition and N assimilation 被引量:4
18
作者 YANG Meng-ya CHEN Jia-qi +2 位作者 TIAN He-yang NI Chen-yang XIAO Kai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第12期2691-2702,共12页
Plant N starvation response is closely associated with the N signaling components that involve transduction of the low-N cues. In this study, we functionally characterized Ta ARR1, a cytokinin(CK) response regulator g... Plant N starvation response is closely associated with the N signaling components that involve transduction of the low-N cues. In this study, we functionally characterized Ta ARR1, a cytokinin(CK) response regulator gene in Triticum aestivum, in mediating the N starvation adaptation in plants. Ta ARR1 harbors two conserved domains specified by plant ARR family members;subcellular localization analysis indicated its target onto nucleus after endoplasmic reticulum assortment. Ta ARR1 displayed modified expression upon the N starvation stressor, showing upregulated expression in roots and leaves over a 27-h N starvation treatment and whose induced transcripts were gradually recovered along with progression of the N recovery treatment. The tobacco lines overexpressing Ta ARR1 displayed improved low-N stress tolerance, displaying enlarged phenotype, increased biomass and N accumulation, and enhanced glutamine synthetase(GS) activities compared with wild type(WT) following the N starvation treatment. Expression analysis on genes encoding the nitrate transporter(NRT) and GS proteins in Nicotiana tabacum revealed that Nt NRT2.2 and Nt GS3 are upregulated in expression in the N-deprived transgenic lines, whose expression patterns were contrasted to other above family genes that were unaltered on transcripts between the transgenic lines and WT. Transgene analysis validated the function of Nt NRT2.2 and Nt GS3 in regulating N accumulation, GS activity, growth traits, and N use efficiency in plants. These results suggested the internal connection between the Ta ARR1-mediated N starvation tolerance and the modified transcription of distinct N acquisitionand assimilation-associated genes. Our investigation together indicates that Ta ARR1 is essential in plant N starvation adaptation due to the gene function in transcriptionally regulating distinct NRT and GS genes that affect plant N uptake and assimilation under the N starvation condition. 展开更多
关键词 wheat(triticum aestivum l.) CYTOKININ response regulator GENE expression N STARVATION functional characterization
下载PDF
TaMIR1119, a miRNA family member of wheat(Triticum aestivum),is essential in the regulation of plant drought tolerance 被引量:6
19
作者 SHI Gui-qing FU Jing-ying +3 位作者 RONG Ling-jie ZHANG Pei-yue GUO Cheng-jin XIAO Kai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第11期2369-2378,共10页
Through regulating target genes via the mechanisms of posttranscriptional cleavage or translational repression, plant miRNAs involve diverse biological processes associating with plant growth, development, and abiotic... Through regulating target genes via the mechanisms of posttranscriptional cleavage or translational repression, plant miRNAs involve diverse biological processes associating with plant growth, development, and abiotic stress responses, in this study, we functionally characterized TaMIR1119, a miRNA family member of wheat (Triticum aestivum), in regulating the drought adaptive response of plants. TaMIR1119 putatively targets six genes categorized into the functional classes of transcriptional regulation, RNA and biochemical metabolism, trafficking, and oxidative stress defense. Upon simulated drought stress, the TaMIR1119 transcripts abundance in roots was drastically altered, showing to be upregulated gradually within a 48-h drought regime andthat the drought-induced transcripts were gradually restored along with a 48-h recovery treatment. In contrast, most miRNA target genes displayed reverse expression patterns to TaMIR1119, exhibiting a downregulated expression pattern upon drought and whose reduced transcripts were re-elevated along with a normal recovery treatment. These expression analysis results indicated that TaMIR1119 responds to drought and regulates the target genes mainly through a cleavage mechanism. Under drought stress, the tobacco lines with TaMIR1119 overexpression behaved improved phenotypes,, showing increased plant biomass, photosynthetic parameters, osmolyte accumulation, and enhanced antioxidant enzyme (AE) activities relative to wild type. Three AE genes, NtFeSOD, NtCAT1;3, and NtSOD2,1, encoding superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) proteins, respectively, showed upregulated expression in TaMIR1119 overexpression lines, suggesting that they are involved in the regulation of AE activities and contribution to the improved cellular reactive oxygen species (ROS) homeostasis in drought-challenged transgenic lines. Our results indicate that TaMIR1119 plays critical roles in regulating plant drought tolerance through transcriptionally regulating the target genes that modulate osmolyte accumulation, photosynthetic function, and improve cellular ROS homeostasis of plants. 展开更多
关键词 wheat triticum aestivum l.) miRNA member drought stress plant growth functional characterization
下载PDF
The Relationship Between Developmental Accumulation of Leaf Soluble Proteins and Vernalization Response of Wheat(Triticum aestivum L.em. Thell) 被引量:5
20
作者 M Majdi G Karimzadeh S Mahfoozi 《Agricultural Sciences in China》 CAS CSCD 2009年第4期410-417,共8页
The relationship between vernalization requirement and quantitative and qualitative changes in total leaf soluble proteins were determined in one spring (cv. Kohdasht) and two winter (cvs. Sardari and Norstar) cul... The relationship between vernalization requirement and quantitative and qualitative changes in total leaf soluble proteins were determined in one spring (cv. Kohdasht) and two winter (cvs. Sardari and Norstar) cultivars of wheat (Triticum aestivum L.) exposed to 4℃. Plants were sampled on days 2, 14, 21 and 35 of exposure to 4℃. The final leaf number (FLN) was determined throughout the vernalization periods (0, 7, 14, 24, and 35 d) at 4℃. The final leaf number decreased until days 24 and 35 in Sardari and Norstar eultivars, respectively, indicating the vernalization saturation at these times. No clear changes were detected in the final leaf number of Kohdash cultivar, verifying no vernalization requirement for this spring wheat cultivar. Comparing with control, clear cold-induced 2-fold increases in proteins quantity occurred after 48 h following the 4℃-treatment in the leaves of the both winter wheat cultivars but, such response was not detected in the spring cultivar. However, the electrophoretic protein patterns showed between-cultivar and between-temperature treatment differences. With increasing exposure time to 4℃, the winter cultivars tended to produce more HMW polypeptides than the spring cultivar. Similar proteins were induced in both Sardari and Norstar winter wheat cultivars, however, the long vernalization requirement in Norstar resulted in high level and longer duration of expression of cold-induced proteins compared to Sardari with a short vernalization requirement. These observations indicate that vernalization response regulates the expression of low temperature (LT) tolerance proteins and determines the duration of expression of LT- induced proteins. 展开更多
关键词 soluble proteins WHEAT triticum aestivum l. final leaf number VERNAlIZATION cold
下载PDF
上一页 1 2 117 下一页 到第
使用帮助 返回顶部