Neutronics optimization calculations have been performed for the tritium breed-ing blankets with solid ceramic breeder Li2O and 1iquid eutectic breeder Lil7Pb83, respectively,based on a 2-D geometrical configuration u...Neutronics optimization calculations have been performed for the tritium breed-ing blankets with solid ceramic breeder Li2O and 1iquid eutectic breeder Lil7Pb83, respectively,based on a 2-D geometrical configuration using the Monte Carlo neutron-photon transport codeMCNP/4B. The effects of beryllium, 6Li enrichment and various structural materials on TritiumBreeding Ratio have been systematically analyzed.展开更多
For the preparation of tritium fuel as the main and rare fuel of reactors in the fusion reactors, the reactor blanket must be designed so that it provides enough tritium breeding ratio. The tritium breeding ratio, TBR...For the preparation of tritium fuel as the main and rare fuel of reactors in the fusion reactors, the reactor blanket must be designed so that it provides enough tritium breeding ratio. The tritium breeding ratio, TBR, in the blanket of reactors should be greater than one, (TBR > 1), by applying lithium blanket. The calculations for proposed parameters (td , fb , η and tp), indicate that the estimated tritium breeding ratio is greater than one. The calculated TBR = 1.04 satisfies the tritium provision condition.展开更多
In this study,the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA)and gas production(helium and hydrogen)in the first wall,as we...In this study,the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA)and gas production(helium and hydrogen)in the first wall,as well as the tritium breeding ratio(TBR)in the coolant and tritium breeding zones.Therefore,the modeling of the magnetic fusion reactor was determined based on the blanket parameters of the International Thermonuclear Experimental Reactor(ITER).Stainless steel(SS 316 LNIG),Oxide Dispersion Strengthened Steel alloy(PM2000 ODS),and China low-activation martensitic steel(CLAM)were used as the first wall(FW)materials.Fluoride family molten salt materials(FLiBe,FLiNaBe,FLiPb)and lithium oxide(LiO_(2))were considered the coolant and tritium production material in the blanket,respectively.Neutron transport calculations were performed using the wellknown 3D code MCNP5 using the continuous-energy Monte Carlo method.The built-in continuous energy nuclear and atomic data libraries along with the Evaluated Nuclear Data file(ENDF)system(ENDF/B-V and ENDF/B-VI)were used.Additionally,the activity cross-section data library CLAW-IV was used to evaluate both the DPA values and gas production of the first wall(FW)materials.An interface computer program written in the FORTRAN 90 language to evaluate the MCNP5 outputs was developed for the fusion reactor blanket.The results indicated that the best TBR value was obtained for the use of the FLiPb coolant,whereas depending on the thickness,the first wall replacement period in terms of radiation damage to all materials was between 6 and 11 years.展开更多
When one wants to simply estimate tritium breeding ratio (TBR), the TBR may be reduced from a "local" TBR for the breeding zones of a blanket module by multiplying the breeder coverage (= the surface area of effe...When one wants to simply estimate tritium breeding ratio (TBR), the TBR may be reduced from a "local" TBR for the breeding zones of a blanket module by multiplying the breeder coverage (= the surface area of effective breeding region / the surface area of the first wall around plasma). When blanket modules are arranged~ the gap between neighboring modules and the frames of the modules are regarded as nombreeding zones. On the other hand, neutrons scattered in the non-breeding zones can enter breeding zones, contributing to tritium production. This means that the estimation method mentioned above tends to underestimate TBR. In order to assess the scattering effect quantitatively, we carried out a three-dimensional Monte Carlo N-particle transport MCNP-5 calculation. It was found from the calculation that there is little decrease in TBR for gaps less than 4 cm when the blanket thickness is 70 cm. The result indicates that such a wide allowance of the gap will facilitate access of remote handling equipment for the replacement of blanket modules and improve access of diagnostics.展开更多
在托卡马克实验装置中,D-T聚变反应释放出的14 Me V高能中子,与周围部件接触会引起包层材料活化、热负载过高等一系列问题,因此在包层设计和优化过程中,相关的中子学计算显得尤为重要。为了研究不同描述的中子源模型对中国聚变工程实验...在托卡马克实验装置中,D-T聚变反应释放出的14 Me V高能中子,与周围部件接触会引起包层材料活化、热负载过高等一系列问题,因此在包层设计和优化过程中,相关的中子学计算显得尤为重要。为了研究不同描述的中子源模型对中国聚变工程实验堆(China Fusion Engineering Test Reactor,CFETR)中子学计算的影响,使用基于蒙特卡罗方法的MCNP(Monte Carlo N Particle Transport Code)程序来模拟中子输运过程,分别计算点源、均匀体源、基于L、H、A模约束的中子源模型对不同中子学计算的影响。结果表明,不同描述的中子源模型对氚增殖比影响较小,对中子壁负载和功率密度分布影响比较明显。展开更多
文摘Neutronics optimization calculations have been performed for the tritium breed-ing blankets with solid ceramic breeder Li2O and 1iquid eutectic breeder Lil7Pb83, respectively,based on a 2-D geometrical configuration using the Monte Carlo neutron-photon transport codeMCNP/4B. The effects of beryllium, 6Li enrichment and various structural materials on TritiumBreeding Ratio have been systematically analyzed.
文摘For the preparation of tritium fuel as the main and rare fuel of reactors in the fusion reactors, the reactor blanket must be designed so that it provides enough tritium breeding ratio. The tritium breeding ratio, TBR, in the blanket of reactors should be greater than one, (TBR > 1), by applying lithium blanket. The calculations for proposed parameters (td , fb , η and tp), indicate that the estimated tritium breeding ratio is greater than one. The calculated TBR = 1.04 satisfies the tritium provision condition.
文摘In this study,the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA)and gas production(helium and hydrogen)in the first wall,as well as the tritium breeding ratio(TBR)in the coolant and tritium breeding zones.Therefore,the modeling of the magnetic fusion reactor was determined based on the blanket parameters of the International Thermonuclear Experimental Reactor(ITER).Stainless steel(SS 316 LNIG),Oxide Dispersion Strengthened Steel alloy(PM2000 ODS),and China low-activation martensitic steel(CLAM)were used as the first wall(FW)materials.Fluoride family molten salt materials(FLiBe,FLiNaBe,FLiPb)and lithium oxide(LiO_(2))were considered the coolant and tritium production material in the blanket,respectively.Neutron transport calculations were performed using the wellknown 3D code MCNP5 using the continuous-energy Monte Carlo method.The built-in continuous energy nuclear and atomic data libraries along with the Evaluated Nuclear Data file(ENDF)system(ENDF/B-V and ENDF/B-VI)were used.Additionally,the activity cross-section data library CLAW-IV was used to evaluate both the DPA values and gas production of the first wall(FW)materials.An interface computer program written in the FORTRAN 90 language to evaluate the MCNP5 outputs was developed for the fusion reactor blanket.The results indicated that the best TBR value was obtained for the use of the FLiPb coolant,whereas depending on the thickness,the first wall replacement period in terms of radiation damage to all materials was between 6 and 11 years.
文摘When one wants to simply estimate tritium breeding ratio (TBR), the TBR may be reduced from a "local" TBR for the breeding zones of a blanket module by multiplying the breeder coverage (= the surface area of effective breeding region / the surface area of the first wall around plasma). When blanket modules are arranged~ the gap between neighboring modules and the frames of the modules are regarded as nombreeding zones. On the other hand, neutrons scattered in the non-breeding zones can enter breeding zones, contributing to tritium production. This means that the estimation method mentioned above tends to underestimate TBR. In order to assess the scattering effect quantitatively, we carried out a three-dimensional Monte Carlo N-particle transport MCNP-5 calculation. It was found from the calculation that there is little decrease in TBR for gaps less than 4 cm when the blanket thickness is 70 cm. The result indicates that such a wide allowance of the gap will facilitate access of remote handling equipment for the replacement of blanket modules and improve access of diagnostics.
文摘在托卡马克实验装置中,D-T聚变反应释放出的14 Me V高能中子,与周围部件接触会引起包层材料活化、热负载过高等一系列问题,因此在包层设计和优化过程中,相关的中子学计算显得尤为重要。为了研究不同描述的中子源模型对中国聚变工程实验堆(China Fusion Engineering Test Reactor,CFETR)中子学计算的影响,使用基于蒙特卡罗方法的MCNP(Monte Carlo N Particle Transport Code)程序来模拟中子输运过程,分别计算点源、均匀体源、基于L、H、A模约束的中子源模型对不同中子学计算的影响。结果表明,不同描述的中子源模型对氚增殖比影响较小,对中子壁负载和功率密度分布影响比较明显。