Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling p...Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling process.In this paper,the element birth and death technique is used to obtain the axial deformation of the hole through finite element simulation.The measured value of the perpendicularity of the hole was compared with the simulated value to verify then the rationality of the simulation model.To reduce the perpendicularity error of the hole in the drilling process,the theory of inventive principle solution(TRIZ)was used to analyze the drilling process of thin-walled cylinder,and the corresponding fixture was developed to adjust the supporting surface height adaptively.Three different fixture supporting layout schemes were used for numerical simulation of drilling process,and the maximum,average and standard deviation of the axial deformation of the flange holes and their maximum hole perpendicularity errors were comparatively analyzed,and the optimal arrangement was optimized.The results show that the proposed deformation control strategy can effectively improve the drilling deformation of thin-walled cylindrical workpiece,thereby significantly improving the machining quality of the parts.展开更多
As a result of the fierceness of business competition, companies, to remaincompetitive, have to charm their customers by anticipating their needs and being able to rapidlydevelop exciting new products for them. To ove...As a result of the fierceness of business competition, companies, to remaincompetitive, have to charm their customers by anticipating their needs and being able to rapidlydevelop exciting new products for them. To overcome this challenge, technology forecasting isconsidered as a powerful tool in today's business environment, while there are as many successstories as there are failures, a good application of this method will give a good result. Amethodology of integration of patterns or lines of technology evolution in TRIZ parlance ispresented, which is also known as TRIZ technology forecasting, as input to the QFD process to designa new product. For this purpose, TRIZ technology forecasting, one of the TRIZ major tools, isdiscussed and some benefits compared to the traditional forecasting techniques are highlighted. Thena methodology to integrate TRIZ technology forecasting and QFD process is highlighted.展开更多
Quality function deployment (QFD) is a quality system, that can help to design novel products that meet customers' needs. Theory of inventive problem solving (TRIZ) is a very powerful tool in helping to solve dif...Quality function deployment (QFD) is a quality system, that can help to design novel products that meet customers' needs. Theory of inventive problem solving (TRIZ) is a very powerful tool in helping to solve difficult technical problems encountered in the design process. Introducing QFD and TRIZ into the conceptual design of the pumping unit combines advantages of these two theories, therefore meeting different demands of different users. It can tell us “What should we do it” with QFD and “How should we do it” with TRIZ. The conceptual design method, which is based on QFD and TRIZ, is introduced andused to analyze and evaluate the conceptual design project of a pumping unit.展开更多
This research is dedicated to assessment of a method that was earlier proposed and developed in order to increase the degree of automation and software involvement into conceptual decision making during design of stru...This research is dedicated to assessment of a method that was earlier proposed and developed in order to increase the degree of automation and software involvement into conceptual decision making during design of structural elements of buildings. Such instruments of the theory of inventive problem solving as contradiction and function analysis and trimming formed the basis of the proposed approach that was realized in a modern building information modeling software. The common logic of the approach is also provided in the article. Qualitative research methods and particularly collecting, analyzing and interpreting data were applied in this research. Firstly, a literature review of indexed journal articles in the field of the study was performed and some trends for possible development of the topic were identified. Secondly, a survey of potential users of the methodology was conducted and analyzed. The questionnaire results showed that the suggested method and its technical realization gained attraction among respondents, however, some of them are rather cautious regarding application of the approach potentials in their practice. The paper ends with evaluation results discussion, conclusion and proposals for further research.展开更多
The green environmental laws and regulations are legislated, implemented, and enforced in many countries and economic regions. The provision of green products and services are the fast growing trend in global consumer...The green environmental laws and regulations are legislated, implemented, and enforced in many countries and economic regions. The provision of green products and services are the fast growing trend in global consumer markets. Therefore, introducing new products with environmental considerations becomes critical for global brand manufacturers. This research depicts an integrated and intelligent eco- and inno-product design methodology to support environmental friendly green product development. The methodology adopts approaches, such as life cycle assessment (LCA), quality function deploymnet for environement (QFDE), theory of inventive problem solving (TRIZ) and back-propagation network (BPN) to achieve eco- and inno-design objectives. LCA evaluates and compares the environmental impacts of production. QFDE transforms high-level concerns of environment into design requirements. When there are many historical QFDE data, the BPN prediction model is trained and deployed to automate the specifications of green design improvement. TRIZ is to support the creation of innovative product design ideas effectively and efficiently during the concept design stage. Finally, this paper presents two eco-design cases of power adaptor to demonstrate the proposed methodology.展开更多
文摘Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling process.In this paper,the element birth and death technique is used to obtain the axial deformation of the hole through finite element simulation.The measured value of the perpendicularity of the hole was compared with the simulated value to verify then the rationality of the simulation model.To reduce the perpendicularity error of the hole in the drilling process,the theory of inventive principle solution(TRIZ)was used to analyze the drilling process of thin-walled cylinder,and the corresponding fixture was developed to adjust the supporting surface height adaptively.Three different fixture supporting layout schemes were used for numerical simulation of drilling process,and the maximum,average and standard deviation of the axial deformation of the flange holes and their maximum hole perpendicularity errors were comparatively analyzed,and the optimal arrangement was optimized.The results show that the proposed deformation control strategy can effectively improve the drilling deformation of thin-walled cylindrical workpiece,thereby significantly improving the machining quality of the parts.
基金This project is supported by National Natural Science Foundation of China(No.20172041) and Provincial Science Foundation of Anhui, China (No.03042308).
文摘As a result of the fierceness of business competition, companies, to remaincompetitive, have to charm their customers by anticipating their needs and being able to rapidlydevelop exciting new products for them. To overcome this challenge, technology forecasting isconsidered as a powerful tool in today's business environment, while there are as many successstories as there are failures, a good application of this method will give a good result. Amethodology of integration of patterns or lines of technology evolution in TRIZ parlance ispresented, which is also known as TRIZ technology forecasting, as input to the QFD process to designa new product. For this purpose, TRIZ technology forecasting, one of the TRIZ major tools, isdiscussed and some benefits compared to the traditional forecasting techniques are highlighted. Thena methodology to integrate TRIZ technology forecasting and QFD process is highlighted.
文摘Quality function deployment (QFD) is a quality system, that can help to design novel products that meet customers' needs. Theory of inventive problem solving (TRIZ) is a very powerful tool in helping to solve difficult technical problems encountered in the design process. Introducing QFD and TRIZ into the conceptual design of the pumping unit combines advantages of these two theories, therefore meeting different demands of different users. It can tell us “What should we do it” with QFD and “How should we do it” with TRIZ. The conceptual design method, which is based on QFD and TRIZ, is introduced andused to analyze and evaluate the conceptual design project of a pumping unit.
文摘This research is dedicated to assessment of a method that was earlier proposed and developed in order to increase the degree of automation and software involvement into conceptual decision making during design of structural elements of buildings. Such instruments of the theory of inventive problem solving as contradiction and function analysis and trimming formed the basis of the proposed approach that was realized in a modern building information modeling software. The common logic of the approach is also provided in the article. Qualitative research methods and particularly collecting, analyzing and interpreting data were applied in this research. Firstly, a literature review of indexed journal articles in the field of the study was performed and some trends for possible development of the topic were identified. Secondly, a survey of potential users of the methodology was conducted and analyzed. The questionnaire results showed that the suggested method and its technical realization gained attraction among respondents, however, some of them are rather cautious regarding application of the approach potentials in their practice. The paper ends with evaluation results discussion, conclusion and proposals for further research.
基金supported by the National Science Council (NSC) in Taiwan
文摘The green environmental laws and regulations are legislated, implemented, and enforced in many countries and economic regions. The provision of green products and services are the fast growing trend in global consumer markets. Therefore, introducing new products with environmental considerations becomes critical for global brand manufacturers. This research depicts an integrated and intelligent eco- and inno-product design methodology to support environmental friendly green product development. The methodology adopts approaches, such as life cycle assessment (LCA), quality function deploymnet for environement (QFDE), theory of inventive problem solving (TRIZ) and back-propagation network (BPN) to achieve eco- and inno-design objectives. LCA evaluates and compares the environmental impacts of production. QFDE transforms high-level concerns of environment into design requirements. When there are many historical QFDE data, the BPN prediction model is trained and deployed to automate the specifications of green design improvement. TRIZ is to support the creation of innovative product design ideas effectively and efficiently during the concept design stage. Finally, this paper presents two eco-design cases of power adaptor to demonstrate the proposed methodology.