In developing countries, lakes being important sources of water supply and fishing are vulnerable to anthropogenic impact, yet knowledge of their trophic state in relation to changes in species composition, and enviro...In developing countries, lakes being important sources of water supply and fishing are vulnerable to anthropogenic impact, yet knowledge of their trophic state in relation to changes in species composition, and environmental variables, are limited. This study is aimed at assessing the trophic status of lakes by monthly sampling of three lakes located along the floodplain of Cross River, Nigeria between January 2008 and December 2009. Samples were analyzed for water quality parameters, zooplankton and phytoplankton composition and distribution. Results were subjected to community structure analysis using trophic state index, species richness and diversity indexes. Essential primary productivity nutrients, nitrates, sulphates and phosphates were highest in Ejagham Lake, and lowest in Ikot Okpora Lake. Dominant phytoplankton species Oscillatoria lacustria (Cyanophyceae), Cyclotella operculata (Bacilliarophyceae) and zooplankton Keratella tropica, Keratella quadrata, Filinia longiseta, Branchionus anguillaris and Trichocerca pusilla (rotifers) all typical of eutrophic communities were recorded in high densities in Ejagham Lake in both dry and wet seasons while Cladocerans, Bosmina longirostris and Moina micrura and copepods considered indicators of oligotrophy and mesotrophy were recorded in large numbers in Ikot Okpora and Obubra Lakes respectively. Higher values of species richness, Evenness and Shannon-Wiener diversity index for both phytoplankton and zooplankton, were recorded in Ejagham Lake during the dry season than wet. Also values of the Trophic state index were generally highest at the Ejagham Lake in the savanna region of the floodplain and lowest at Ikot Okpora in the forest region of the floodplain. Forest region is therefore a limiting factor in the productivity of lakes in the tropics.展开更多
Continuous long-term monitoring of aquatic systems is important for understanding their complete evolution in order to monitor changes in the trophic status and water quality. The continuous monitoring during a period...Continuous long-term monitoring of aquatic systems is important for understanding their complete evolution in order to monitor changes in the trophic status and water quality. The continuous monitoring during a period of 20 years, by sampling once a month at two locations, the water quality of reservoir “Grliste”, which is used for the water supplying town Zajecar (Eastern Serbia), is observed and developmental stages in the life of the reservoir were determinated. It should be noted that the obtained results were used also in the purpose of finding a cause of cyanobacteria bloom, as a consequence of algal production. Limiting factors of algal production usually were nitrogen and phosphorus, however, in this study, obtained results of subtraction between trophic state index, calculated through total chlorophyll a (TSIChl-a) and trophic state index, calculated through total phosphorus (TSITP), indicated that limiting factor of algal production was light. On the basis of the concentrations of dissolved oxygen (DO), total phosphorus (TP) and chlorophyll a (Chl-a) in the surface and in the bottom, it was concluded that the reservoir passed through four development phases during the examined period. Results of long-term monitoring showed that in the first years after the formation of the reservoir, the highest trophicity was detected (hypereutrophic status), but later the reservoir mostly maintained eutrophic status.展开更多
A trophic state increase relates to surface water bodies nutrient enrichment,due to the chemical products used such as fertilizers in agriculture and residues from cattle raising activities.This research consists of n...A trophic state increase relates to surface water bodies nutrient enrichment,due to the chemical products used such as fertilizers in agriculture and residues from cattle raising activities.This research consists of nutrient transport numerical modeling to analyze the Betancíreservoir trophic state in Colombia;Water samples were collected to analyze total nitrogen,total phosphorus,ammonia,nitrates,nitrites,phosphates,chlorophyll-a,dissolved oxygen,BOD,COD,suspended solids,and water trans-parency.The water quality model MOHID Studio was implemented and after its calibration,scenarios of increase and decrease of nutrients and inflows to the reservoir through its main tributaries were simulated to reproduce the agricultural activity changes in the basin and the effects that would have on the reservoir's trophic state dynamics;Therefore,the Carlson Trophic Status Index was calculated for each case.The results show that variations in total nitrogen concentration and increased inflows present short-term consequences on the reservoir's trophic state.Increasing the incoming total nitrogen con-centrations by 100%causes the reservoir to change from a light eutrophic to a hypereutrophic state.The results of this research provide a starting tool to water resources integrated management in reservoirs.展开更多
文摘In developing countries, lakes being important sources of water supply and fishing are vulnerable to anthropogenic impact, yet knowledge of their trophic state in relation to changes in species composition, and environmental variables, are limited. This study is aimed at assessing the trophic status of lakes by monthly sampling of three lakes located along the floodplain of Cross River, Nigeria between January 2008 and December 2009. Samples were analyzed for water quality parameters, zooplankton and phytoplankton composition and distribution. Results were subjected to community structure analysis using trophic state index, species richness and diversity indexes. Essential primary productivity nutrients, nitrates, sulphates and phosphates were highest in Ejagham Lake, and lowest in Ikot Okpora Lake. Dominant phytoplankton species Oscillatoria lacustria (Cyanophyceae), Cyclotella operculata (Bacilliarophyceae) and zooplankton Keratella tropica, Keratella quadrata, Filinia longiseta, Branchionus anguillaris and Trichocerca pusilla (rotifers) all typical of eutrophic communities were recorded in high densities in Ejagham Lake in both dry and wet seasons while Cladocerans, Bosmina longirostris and Moina micrura and copepods considered indicators of oligotrophy and mesotrophy were recorded in large numbers in Ikot Okpora and Obubra Lakes respectively. Higher values of species richness, Evenness and Shannon-Wiener diversity index for both phytoplankton and zooplankton, were recorded in Ejagham Lake during the dry season than wet. Also values of the Trophic state index were generally highest at the Ejagham Lake in the savanna region of the floodplain and lowest at Ikot Okpora in the forest region of the floodplain. Forest region is therefore a limiting factor in the productivity of lakes in the tropics.
基金supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia,Project OI 176018
文摘Continuous long-term monitoring of aquatic systems is important for understanding their complete evolution in order to monitor changes in the trophic status and water quality. The continuous monitoring during a period of 20 years, by sampling once a month at two locations, the water quality of reservoir “Grliste”, which is used for the water supplying town Zajecar (Eastern Serbia), is observed and developmental stages in the life of the reservoir were determinated. It should be noted that the obtained results were used also in the purpose of finding a cause of cyanobacteria bloom, as a consequence of algal production. Limiting factors of algal production usually were nitrogen and phosphorus, however, in this study, obtained results of subtraction between trophic state index, calculated through total chlorophyll a (TSIChl-a) and trophic state index, calculated through total phosphorus (TSITP), indicated that limiting factor of algal production was light. On the basis of the concentrations of dissolved oxygen (DO), total phosphorus (TP) and chlorophyll a (Chl-a) in the surface and in the bottom, it was concluded that the reservoir passed through four development phases during the examined period. Results of long-term monitoring showed that in the first years after the formation of the reservoir, the highest trophicity was detected (hypereutrophic status), but later the reservoir mostly maintained eutrophic status.
文摘A trophic state increase relates to surface water bodies nutrient enrichment,due to the chemical products used such as fertilizers in agriculture and residues from cattle raising activities.This research consists of nutrient transport numerical modeling to analyze the Betancíreservoir trophic state in Colombia;Water samples were collected to analyze total nitrogen,total phosphorus,ammonia,nitrates,nitrites,phosphates,chlorophyll-a,dissolved oxygen,BOD,COD,suspended solids,and water trans-parency.The water quality model MOHID Studio was implemented and after its calibration,scenarios of increase and decrease of nutrients and inflows to the reservoir through its main tributaries were simulated to reproduce the agricultural activity changes in the basin and the effects that would have on the reservoir's trophic state dynamics;Therefore,the Carlson Trophic Status Index was calculated for each case.The results show that variations in total nitrogen concentration and increased inflows present short-term consequences on the reservoir's trophic state.Increasing the incoming total nitrogen con-centrations by 100%causes the reservoir to change from a light eutrophic to a hypereutrophic state.The results of this research provide a starting tool to water resources integrated management in reservoirs.