期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hurricane Camille 1969 and Storm-Triggered Landslides in the Appalachians and a Perspective in a Warmer Climate
1
作者 Diandong Ren 《International Journal of Geosciences》 2016年第1期53-77,共25页
This study analyzes storm-triggered landslides in the US Appalachians, in the current geological setting. Concave valleys that favor the convergence of surface runoff are the primary locales for landslides. If the slo... This study analyzes storm-triggered landslides in the US Appalachians, in the current geological setting. Concave valleys that favor the convergence of surface runoff are the primary locales for landslides. If the slopes are weathered to the same degree and have the same vegetation coverage, slope orientation (azimuthal) is not critical for slope stability. However, it is found that for the region south of the Black Mountains (North Carolina), north-facing slopes are more prone to slide, because, for the regions not limited by water availability (annual precipitation), the northern slopes usually are grass slopes. For the slopes of the Blue Ridge Mountains, south facing slopes are more prone to slide. Gravity measurements over the past decade reveal that geological conditions, the chute system and underground cracks over the region are stable. Future changes in storm-triggered landslide frequency are primarily controlled by changes in extreme precipitation. Thus, a series of ensemble climate model experiments is carried out to investigate possible changes in future extreme precipitation events, using a weather model forced by atmospheric perturbations from ensemble climate models. Over 50 locations are identified as prone to future landslides. Many of these locales are natural habitats to the Appalachian salamanders. In a future warmer climate, more severe extreme precipitation events are projected because of increased atmospheric water vapor and more frequent passages of tropical cyclone remnants. There is also a likely shift of tropical cyclone tracks and associated extreme precipitations, and the cluster center of Appalachians’s scarps is expected to move westward, with ecological consequences for the endemic salamanders. 展开更多
关键词 Extreme Precipitation Climate Change Landslides Flash Floods Endemic Salamanders to Appalachians Ecosystem in Mountains tropical cyclone remnants and extra-tropical transition SEGMENT-Landslide Blue Mountain Ecosystem
下载PDF
Hurricane Camille 1969 and Storm-Triggered Landslides in the Appalachians and a Perspective in a Warmer Climate
2
作者 Diandong Ren 《International Journal of Geosciences》 2016年第1期53-77,共25页
This study analyzes storm-triggered landslides in the US Appalachians, in the current geological setting. Concave valleys that favor the convergence of surface runoff are the primary locales for landslides. If the slo... This study analyzes storm-triggered landslides in the US Appalachians, in the current geological setting. Concave valleys that favor the convergence of surface runoff are the primary locales for landslides. If the slopes are weathered to the same degree and have the same vegetation coverage, slope orientation (azimuthal) is not critical for slope stability. However, it is found that for the region south of the Black Mountains (North Carolina), north-facing slopes are more prone to slide, because, for the regions not limited by water availability (annual precipitation), the northern slopes usually are grass slopes. For the slopes of the Blue Ridge Mountains, south facing slopes are more prone to slide. Gravity measurements over the past decade reveal that geological conditions, the chute system and underground cracks over the region are stable. Future changes in storm-triggered landslide frequency are primarily controlled by changes in extreme precipitation. Thus, a series of ensemble climate model experiments is carried out to investigate possible changes in future extreme precipitation events, using a weather model forced by atmospheric perturbations from ensemble climate models. Over 50 locations are identified as prone to future landslides. Many of these locales are natural habitats to the Appalachian salamanders. In a future warmer climate, more severe extreme precipitation events are projected because of increased atmospheric water vapor and more frequent passages of tropical cyclone remnants. There is also a likely shift of tropical cyclone tracks and associated extreme precipitations, and the cluster center of Appalachians’s scarps is expected to move westward, with ecological consequences for the endemic salamanders. 展开更多
关键词 Extreme Precipitation Climate Change Landslides Flash Floods Endemic Salamanders to Appalachians Ecosystem in Mountains tropical cyclone remnants and extra-tropical transition SEGMENT-Landslide Blue Mountain Ecosystem
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部