Previous studies have revealed a connection between springtime sea surface temperature (SST) in the tropical northern Atlantic (TNA) and the succeeding wintertime El Nino-Southern Oscillation (ENSO). The present...Previous studies have revealed a connection between springtime sea surface temperature (SST) in the tropical northern Atlantic (TNA) and the succeeding wintertime El Nino-Southern Oscillation (ENSO). The present analysis demonstrates that the linkage between springtime TNA SST and the following ENSO experiences an obvious interdecadal change around the early 1980s, with the connection being weak before but significant after. After the early 1980s, springtime positive TNA SST anomalies induce an anomalous cyclone over the northeastern subtropical Pacific and an anomalous Walker circulation with a descending branch over the tropical central-eastern Pacific. This leads to anomalous cold SST in the northeastern Pacific and an anomalous anticyclone over the western-central tropical Pacific, with anomalous easterlies to the equatorward side. As such, springtime TNA SST anomalies are followed by wintertime ENSO after the early 1980s. In contrast, before the early 1980s, anomalous cold SST in the northeastern Pacific and related anomalous easterlies over the western-central tropical Pacific are weak, corresponding to springtime positive TNA SST anomalies and resulting in a weak linkage between springtimeTNA SST and the succeeding wintertime ENSO. Further investigation implies that the change in the TNA SST-ENSO relationship is probably due to a change in springtime mean precipitation over the tropical Atlantic and South America.展开更多
Previous studies suggest that spring SST anomalies over the northern tropical Atlantic(NTA) affect the tropical cyclone(TC) activity over the western North Pacific(WNP) in the following summer and fall. The pres...Previous studies suggest that spring SST anomalies over the northern tropical Atlantic(NTA) affect the tropical cyclone(TC) activity over the western North Pacific(WNP) in the following summer and fall. The present study reveals that the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is not stationary. The influence of spring NTA SST on following summer–fall WNP TC genesis frequency is weak and insignificant before, but strong and significant after, the late 1980 s. Before the late 1980 s, the NTA SST anomaly-induced SST anomalies in the tropical central Pacific are weak, and the response of atmospheric circulation over the WNP is not strong. As a result, the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is insignificant in the former period. In contrast,after the late 1980 s, NTA SST anomalies induce pronounced tropical central Pacific SST anomalies through an Atlantic–Pacific teleconnection. Tropical central Pacific SST anomalies further induce favorable conditions for WNP TC genesis,including vertical motion, mid-level relative humidity, and vertical zonal wind shear. Hence, the connection between NTA SST and WNP TC genesis frequency is significant in the recent period. Further analysis shows that the interdecadal change in the connection between spring NTA SST and following summer–fall WNP TC genesis frequency may be related to the climatological SST change over the NTA region.展开更多
The skill of most ENSO prediction models has declined significantly since 2000.This decline may be due to a weakening of the correlation between tropical predictors and ENSO.Moreover,the effects of extratropical ocean...The skill of most ENSO prediction models has declined significantly since 2000.This decline may be due to a weakening of the correlation between tropical predictors and ENSO.Moreover,the effects of extratropical ocean variability on ENSO have increased during this period.To improve ENSO predictability,the authors investigate the influence of the extratropical Atlantic and Pacific oceans on ENSO during the pre-2000 and post-2000 periods,and find that the influence of the northern tropical Atlantic sea surface temperature(NTA SST)on ENSO has significantly increased since 2000.Furthermore,there is a much earlier and stronger correlation between NTA SST and ENSO over the central-eastern Pacific during June-July-August in the post-2000 period compared with the pre-2000 period.The extratropical Pacific SST predictors for ENSO retain an approximate 10-month lead time after 2000.The authors use SST signals in the extratropical Atlantic and Pacific to predict ENSO using a statistical prediction model.This results in a significant improvement in ENSO prediction skill and an obvious decrease in the spring predictability barrier phenomenon of ENSO.These results indicate that extratropical Atlantic and Pacific SSTs can make substantial contributions to ENSO prediction,and can be used to enhance ENSO predictability after 2000.展开更多
基金supported by the National Natural Science Foundation of China[grant numbers 41530425 and 41605050]the China Postdoctoral Science Foundation[grant number2015M581151]
文摘Previous studies have revealed a connection between springtime sea surface temperature (SST) in the tropical northern Atlantic (TNA) and the succeeding wintertime El Nino-Southern Oscillation (ENSO). The present analysis demonstrates that the linkage between springtime TNA SST and the following ENSO experiences an obvious interdecadal change around the early 1980s, with the connection being weak before but significant after. After the early 1980s, springtime positive TNA SST anomalies induce an anomalous cyclone over the northeastern subtropical Pacific and an anomalous Walker circulation with a descending branch over the tropical central-eastern Pacific. This leads to anomalous cold SST in the northeastern Pacific and an anomalous anticyclone over the western-central tropical Pacific, with anomalous easterlies to the equatorward side. As such, springtime TNA SST anomalies are followed by wintertime ENSO after the early 1980s. In contrast, before the early 1980s, anomalous cold SST in the northeastern Pacific and related anomalous easterlies over the western-central tropical Pacific are weak, corresponding to springtime positive TNA SST anomalies and resulting in a weak linkage between springtimeTNA SST and the succeeding wintertime ENSO. Further investigation implies that the change in the TNA SST-ENSO relationship is probably due to a change in springtime mean precipitation over the tropical Atlantic and South America.
基金supported by the National Natural Science Foundation of China(Grant Nos.41505048,41461164005,41275001,41475074,41505061 and 41475081)the LASW State Key Laboratory Special Fund(Grant No.2015LASW-B04)
文摘Previous studies suggest that spring SST anomalies over the northern tropical Atlantic(NTA) affect the tropical cyclone(TC) activity over the western North Pacific(WNP) in the following summer and fall. The present study reveals that the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is not stationary. The influence of spring NTA SST on following summer–fall WNP TC genesis frequency is weak and insignificant before, but strong and significant after, the late 1980 s. Before the late 1980 s, the NTA SST anomaly-induced SST anomalies in the tropical central Pacific are weak, and the response of atmospheric circulation over the WNP is not strong. As a result, the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is insignificant in the former period. In contrast,after the late 1980 s, NTA SST anomalies induce pronounced tropical central Pacific SST anomalies through an Atlantic–Pacific teleconnection. Tropical central Pacific SST anomalies further induce favorable conditions for WNP TC genesis,including vertical motion, mid-level relative humidity, and vertical zonal wind shear. Hence, the connection between NTA SST and WNP TC genesis frequency is significant in the recent period. Further analysis shows that the interdecadal change in the connection between spring NTA SST and following summer–fall WNP TC genesis frequency may be related to the climatological SST change over the NTA region.
基金This research was supported by the National Natural Science Foundation of China[grant number 41975070]the Identification and mechanism study of global warming‘hiatus’phenomenon of 973 project of China[grant number 2016YFA0601801].
文摘The skill of most ENSO prediction models has declined significantly since 2000.This decline may be due to a weakening of the correlation between tropical predictors and ENSO.Moreover,the effects of extratropical ocean variability on ENSO have increased during this period.To improve ENSO predictability,the authors investigate the influence of the extratropical Atlantic and Pacific oceans on ENSO during the pre-2000 and post-2000 periods,and find that the influence of the northern tropical Atlantic sea surface temperature(NTA SST)on ENSO has significantly increased since 2000.Furthermore,there is a much earlier and stronger correlation between NTA SST and ENSO over the central-eastern Pacific during June-July-August in the post-2000 period compared with the pre-2000 period.The extratropical Pacific SST predictors for ENSO retain an approximate 10-month lead time after 2000.The authors use SST signals in the extratropical Atlantic and Pacific to predict ENSO using a statistical prediction model.This results in a significant improvement in ENSO prediction skill and an obvious decrease in the spring predictability barrier phenomenon of ENSO.These results indicate that extratropical Atlantic and Pacific SSTs can make substantial contributions to ENSO prediction,and can be used to enhance ENSO predictability after 2000.