期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Subtropical forest macro-decomposers rapidly transfer litter carbon and nitrogen into soil mineral-associated organic matter
1
作者 Guoxiang Niu Tao Liu +4 位作者 Zhen Zhao Xuebing Zhang Huiling Guan Xiaoxiang He Xiankai Lu 《Forest Ecosystems》 SCIE CSCD 2024年第2期131-139,共9页
Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SO... Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SOM into particulate and mineral-associated organic matter(POM vs.MAOM)is a promising method for identifying how SOM contributes to reducing global warming.Soil macrofauna,earthworms,and millipedes have been found to play an important role in facilitating SOM processes.However,how these two co-existing macrofaunae impac the litter decomposition process and directly impact the formation of POM and MAOM remains unclear.Methods:Here,we set up a microcosm experiment,which consisted of 20 microcosms with four treatments earthworm and litter addition(E),millipedes and litter addition(M),earthworm,millipedes,and litter addition(E+M),and control(only litter addition)in five replicates.The soil and litter were sterilized prior to beginning the incubation experiment to remove any existing microbes.After incubating the samples for 42 days,the litte properties(mass,C,and N contents),soil physicochemical properties,as well as the C and N contents,and POM and MAOM^(13)C abundance in the 0–5 and 5–10 cm soil layers were measured.Finally,the relative influences o soil physicochemical and microbial properties on the distribution of C and N in the soil fractions were analyzed Results:The litter mass,C,and N associated with all four treatments significantly decreased after incubation especially under treatment E+M(litter mass:-58.8%,litter C:-57.0%,litter N:-75.1%,respectively),while earthworm biomass significantly decreased under treatment E.Earthworm or millipede addition alone showed no significant effects on the organic carbon(OC)and total nitrogen(TN)content in the POM fraction,but join addition of both significantly increased OC and TN regardless of soil depth.Importantly,all three macrofauna treatments increased the OC and TN content and decreased the^(13)C abundance in the MAOM fraction.More than65%of the total variations in the distribution of OC and TN throughout the two fractions can be explained by a combination of soil physicochemical and microbial properties.Changes in the OC distribution in the 0–5 cm soi layer are likely due to a decrease in soil pH and an increase in arbuscular mycorrhizal fungi(AMF),while those in the 5–10 cm layer are probably caused by increases in soil exchangeable Ca and Mg,in addition to fungi and gram-negative(GN)bacteria.The observed TN distribution changes in the 0–5 cm soil likely resulted from a decrease in soil pH and increases in AMF,GN,and gram-negative(GP)bacteria,while TN distribution changes in the 5–10 cm soil could be explained by increases in exchangeable Mg and GN bacteria.Conclusions:The results indicate that the coexistence of earthworms and millipedes can accelerate the litte decomposition process and store more C in the MAOM fractions.This novel finding helps to unlock the processe by which complex SOM systems serve as C sinks in tropical forests and addresses the importance of soil mac rofauna in maintaining C-neutral atmospheric conditions under global climate change. 展开更多
关键词 tropical and subtropical forest Soil organic matter fractions EARTHWORM MILLIPEDES Litter decomposition
下载PDF
Simulation and Analysis about the Effects of Geopotential Height Anomaly in Tropical and Subtropical Region on Droughts or Floods in the Yangtze River Valley and North China
2
作者 黄燕燕 钱永甫 万齐林 《Acta meteorologica Sinica》 SCIE 2006年第4期426-436,共11页
Previous study comes to the conclusion: based on the anomalies of the South Asian high (SAH), 100-hPa geopotential height, and 100-hPa circulation over tropical and subtropical regions, we can predict precipitation... Previous study comes to the conclusion: based on the anomalies of the South Asian high (SAH), 100-hPa geopotential height, and 100-hPa circulation over tropical and subtropical regions, we can predict precipitation anomaly in the Yangtze River Valley and North China. To test its validity, a series of experiments have been designed and operated, which include controlled experiment, sensitivity experiment (which has added anomalies into 100-hPa geopotential height and wind field), and four-composite experiments. Experiments based on the composed initial field such as EPR-CF, EPR-CD, EPR-HF, and EPR-HD, can reproduce the floods or droughts in the Yangtze River Valley and North China. It suggests that anomalies of the SAH, 100- hPa geopotential height, and circulation over tropical and subtropical regions may probably imply summer precipitation anomalies in the two regions. Sensitivity experiment results show that anomalies of the SAH, 100-hPa geopotential height, and southwest flow in the previous period is a signal of droughts or floods for the following summer in the Yangtze River Valley and North China. And it is also one of the factors that have impact on summer precipitation anomaly in the two regions. Positive anomaly of 100-hPa geopotential height and the anomalous intensifying of the SAH and southwest flow will induce floods in the Yangtze River Valley and droughts in North China; while negative anomaly of 100-hPa geopotential height and anomalous weakening of the SAH and southwest flow will induce droughts in the Yangtze River Valley and floods in North China. 展开更多
关键词 geopotential height anomalies tropical and subtropical regions South Asian high (SAH) droughts or floods in the Yangtze River Valley droughts or floods in North China simulation and analysis
原文传递
Composition, diversity and distribution of tree species in response to changing soil properties with increasing distance from water source – a case study of Gobind Sagar Reservoir in India 被引量:4
3
作者 Somanath SARVADE Bhupender GUPTA Matber SINGH 《Journal of Mountain Science》 SCIE CSCD 2016年第3期522-533,共12页
Construction of big dams on rivers develops artificial lakes or water reservoirs which conceive alterations in soil properties of the upstream catchment area. An undulating topography and freckly soil properties cause... Construction of big dams on rivers develops artificial lakes or water reservoirs which conceive alterations in soil properties of the upstream catchment area. An undulating topography and freckly soil properties cause ups and downs in tree diversity, composition and distribution. The study aimed to evaluate the effect of Gobind Sagar reservoir on soil properties relative to the distance from it and assess its effect on tree diversity, evenness and their distribution in tropical and subtropical forests. Based on data analysis it was found that the soil moisture and organic carbon decreased along with increasing distance from the reservoir. It played a significant role in varying tree diversity. The sites distributed within0-2 km showed significantly higher α and β-diversity indices. Tree species richness and diversity indices showed a strong correlation(p &lt; 0.05) with soil moisture and organic carbon content. Simpson's and Mc Intosh evenness indices showed a strong negative correlation with soil bulk density. Indirect Detrended Correspondence Analysis(DCA) identified soil moisture and soil organic carbon as two major environmental gradients that influenced tree diversity and their distribution in five tropical and four subtropical forests in an upstream catchment of the reservoir. Mixed forests inhabited moist sites andAcacia-Pinus forests showed an inclination to dry areas. Canonical Correspondence Analysis(CCA)revealed that the tree species in tropical forests were mainly affected by driving forces such as soil moisture,organic carbon and bulk density whereas, in subtropical forest tree species were influenced by elevation, soil p H, EC and clay content. 展开更多
关键词 Species richness Diversity Evenness DCA CCA Gobind Sagar reservoir tropical and subtropical forests
下载PDF
Phosphate Adsorption and Surface Charge Characteristics and Their Relations to Mineralogy of Some Soils from Southern China
4
作者 ZHANG MINGKUI M. J. WILSON +1 位作者 HE ZHENLI L. CLARK and D. M. L. DUTHIE (Department of Soil Science and Agricultural Chemistry, Zhejiang Agricultural University, Hanyzhou 310029 China) (Soils and Soil Microbiolopy Division, Macaulay Land Use Research Institu 《Pedosphere》 SCIE CAS CSCD 1998年第4期297-304,共8页
The phosphate adsorption and surface charge characteristics of the tropical and subtropical soils derived from different parent materials in China were determined, and their relations to soil mineralogy were analysed.... The phosphate adsorption and surface charge characteristics of the tropical and subtropical soils derived from different parent materials in China were determined, and their relations to soil mineralogy were analysed.The results showed that all soil phosphate adsorption curves were well fitted by Freundlich equation and Langmuir equation. The maximum buffering capacity of P ranged from 66 to 9880 mg kg-1, with an increasing order of purple soil, skeletal soil, red soil, lateritic red soil, yellow soil and latosol; and the highest value was 149 times the lowest value, which indicated great differences among these soils in phosphate adsorption and supplying characteristics. The pHo (zero point of charge) values obtained by salt titrationpotential titration varied from 3.03 to 5.49, and the highest value was found in the latosol derived from basalt whereas the lowest value was found in the purple soil. The correlation analysis indicated that the main minerals responsible for phosphate adsorption in the soils were gibbsite, amorphous iron oxide and kaolinite; and the pHo was mainly controlled by kaolinite, gibbsite and oxides. 展开更多
关键词 MINERALOGY pH_0 phosphate adsorption tropical and subtropical soils
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部