期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Estimating Tropical Cyclone Precipitation from Station Observations 被引量:53
1
作者 任福民 王咏梅 +1 位作者 王小玲 李维京 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第4期700-711,共12页
In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert ... In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert Subjective Method (ESM), the Objective Synoptic Analysis Technique (OSAT) for partitioning TC precipitation was developed by analyzing the western North Pacific (WNP) TC historical track and the daily precipitation datasets. Being an objective way of the ESM, OSAT overcomes the main problems in OOM, by changing two fixed parameters in OOM, the thresholds for the distance of the absolute TC precipitation (D0) and the TC size (D1), into variable parameters.Case verification for OSAT was also carried out by applying CMORPH (Climate Prediction Center MORPHing technique) daily precipitation measurements, which is NOAA's combined satellite precipitation measurement system. This indicates that OSAT is capable of distinguishing simultaneous TC precipitation rain-belts from those associated with different TCs or with middle-latitude weather systems. 展开更多
关键词 tropical cyclone precipitation the Original Objective Method comparison analysis the Objective Synoptic Analysis Technique
下载PDF
ANALYSIS OF TROPICAL CYCLONE PRECIPITATION FOR DIFFERENT INTENSITY CLASS IN NORTHWEST PACIFIC WITH TRMM DATA
2
作者 刘喆 白洁 +3 位作者 黄兵 严军 周著华 张文军 《Journal of Tropical Meteorology》 SCIE 2016年第2期118-126,共9页
Combined with TRMM products and Tropical Cyclone(TC) best track data in Northwest Pacific from 1 January 2003 to 31 December 2009,a total of 118 TCs,including 336 instantaneous TC precipitation observations are establ... Combined with TRMM products and Tropical Cyclone(TC) best track data in Northwest Pacific from 1 January 2003 to 31 December 2009,a total of 118 TCs,including 336 instantaneous TC precipitation observations are established as the TRMM TC database,and the database is stratified into four intensity classes according to the standard of TC intensity adopted by China Meteorological Administration(CMA):Severe Tropical Storm(STS),Typhoon(TY),Severe Typhoon(STY) and Super Typhoon(SuperT Y).For each TC snapshot,the mean rainfall distribution is computed using 10-km annuli from the TC center to a 300-km radius,then the axisymmetric component of TC rainfall is represented by the radial distribution of the azimuthal mean rain rate;the mean rain rates,rain types occurrence and contribution proportion are computed for each TC intensity class;and the mean quadrantal distribution of rain rates along TCs motion is analyzed.The result shows that:(1) TCs mean rain rates increase with their intensity classes,and their radial distributions show single-peak characteristic gradually,and furthermore,the characteristics of rain rates occurrence and contribution proportion change from dual-peak to single-peak distribution,with the peak rain rate at about 5.0mm/h;(2) Stratiform rain dominate the rain type in the analysis zone,while convective rain mainly occurred in the eye-wall region;(3) The values of mean rain rate in each quadrant along TCs motion are close to each other,relatively,the value in the right-rear quadrant is the smallest one. 展开更多
关键词 TRMM tropical cyclone intensity class precipitation
下载PDF
Contribution of Winter SSTA in the Tropical Eastern Pacific to Changes of Tropical Cyclone Precipitation over Southeast China 被引量:1
3
作者 Xianghua WU Qihao ZHU +4 位作者 Chao WANG Yue ZHOU Yiqi CHEN Xintong TIAN Yajie HUA 《Journal of Meteorological Research》 SCIE CSCD 2022年第2期282-291,共10页
Tropical cyclone precipitation(TCP)accounts for 10%-40%of the boreal summer precipitation that occurs over Southeast China(SEC),causing flood disasters and serious damage.On the decadal scale,TCP increases significant... Tropical cyclone precipitation(TCP)accounts for 10%-40%of the boreal summer precipitation that occurs over Southeast China(SEC),causing flood disasters and serious damage.On the decadal scale,TCP increases significantly in SEC while TC frequency decreases in the western North Pacific(WNP)during 1980-2019.Therefore,variations in TCP and the corresponding physical mechanism are investigated in this study.First,an empirical statistical method is introduced to quantify the TCP amount based on accumulated cyclone energy(ACE)and TC frequency with the TCP anomaly decomposed into three items(rainfall frequency,rainfall intensity,and nonlinear item).ACE,as the integration of TC intensity and frequency,is a more effective index than TC frequency for depicting the characteristics of TCP because the contribution of rainfall frequency represented by ACE is higher than that of TC frequency.Then,the physical mechanism affecting the WNP TC activities and TCP in SEC are inspected.Positive sea surface temperature anomaly(SSTA)over the tropical eastern Pacific(TEP)in winter can trigger variations of air-sea interaction over the tropical Pacific,including low-level divergent winds,mid-tropospheric descent flows,high-level convergent winds coupled with negative anomalies of vorticity and humidity over the tropical western Pacific(TWP)in the next summer.These dynamic conditions provide unfavorable environments for TC activities in the WNP and constrain TCP in SEC.Furthermore,more significantly negative SSTA events in the TEP facilitate enhanced ACE along with positive relative vorticity,relative humidity,and upwelling vertical winds anomalies over the coast of SEC after 1998,which is a reasonable explanation for the increasing TCP in SEC. 展开更多
关键词 tropical cyclone precipitation accumulated cyclone energy sea surface temperature anomaly air–sea interaction
原文传递
Contribution of tropical cyclone rainfall at categories to total precipitation over the Western North Pacific from 1998 to 2007 被引量:5
4
作者 CHEN FengJiao FU YunFei 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第11期2015-2025,共11页
Based on 10 years precipitation data from Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 and the best track data from China Meteorological Administration (CMA), t... Based on 10 years precipitation data from Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 and the best track data from China Meteorological Administration (CMA), the seasonal, monthly and annual contribution of tropical cyclone (TC) precipitation to the total rainfall are analyzed over the Western North Pacific (WNP) during 1998 to 2007 from May to December. The results show that: (1) TC seasonal rainfall contribution ranges from 4% in inland regions to above 40% in ocean-regions of 15°N-25°N. TCs at higher categories contribute much more to the total precipitation. (2) On monthly scale, TCs contribute 60% to the total rainfall regionally during whole TC season, which is the maximum contribution. The peak contribution of TC rainfall averaged in multi-months of the ten years occurs in August (28%) over the whole ocean impacted by TC and in December (23%) over the whole land impacted by TC, respectively. (3) On annual scale, the maximum contribution of TC precipitation to the total rainfall are in 2004 (-30%) over ocean and in 1998 (-20%) over land, respectively. (4) The contribution of TC precipitation to the total rainfall increases 6% (decreases 6%) in El Nino (La Nifia) years compared with neutral years. 展开更多
关键词 tropical cyclone precipitation contribution 3B42 WNP ENSO
原文传递
Relationship of tropical-cyclone-induced remote precipitation with tropical cyclones and the subtropical high 被引量:2
5
作者 Rui XING Zhiying DING +1 位作者 Sangjie YOU Haiming XU 《Frontiers of Earth Science》 SCIE CAS CSCD 2016年第3期595-606,共12页
This study concerns the precipitation induced by a tropical cyclone (TC) before the TC arrives, which will be referred to as TC remote precipitation (TRP). Based on the distribution characteristics of the non-rota... This study concerns the precipitation induced by a tropical cyclone (TC) before the TC arrives, which will be referred to as TC remote precipitation (TRP). Based on the distribution characteristics of the non-rotational wind and the divergent-wind vertical circulation related to TC, the subtropical high, and TRP of 45 TRP events during June, July, and August of 2000-2009, the relationships among these three entities (TC, subtropical high, and TRP) can be categorized into four patterns. The first pattern accounts for the highest proportion of the TRP events (59%), and a conceptual model is then provided for this pattern. The primary characteristics of this model are as follows: TC, the subtropical high, and TRP can interact with each other through the divergent-wind secondary circulation at both sides of the ridge line of the subtropical high (between the subtropical high and TC, and between the subtropical high and TRP). At the upper level (150 or 200 hPa), the northward non-rotational wind from the TC converged toward the subtropical high ridge line and subsided, and at 950 hPa the divergent wind from the ridge line of the subtropical high converged toward TC; these constructed the secondary circulation between TC and the subtropical high. In the meantime, the southward non- rotational wind at the upper level (150 or 200hPa) from TRP and the divergent wind at 950hPa from the subtropical high ridge line toward TRP constructed the secondary circulation between TRP and the subtropical high. As TC and TRP interacted with each other, the subtropical high ridge line was usually under the down- draft area of the whole atmosphere. The other three patterns are different from the first pattern mainly in terms of the intensity and position of the non-rotational-wind secondary circulation. The numerical simulation of the Beijing 7.21 rainstorm confirmed the relationship amongTC, the subtropical high, and TRP, indicating that when the interaction weakened, the TRP also weakened. 展开更多
关键词 tropical cyclone precipitation subtropical high simulation tropical cyclone remotedivergent wind numerical
原文传递
Estimation of mean water vapour residence time during tropical cyclones using a Lagrangian approach 被引量:1
6
作者 Albenis Perez-Alarcon Patricia Coll-Hidalgo +2 位作者 Jose C.Fernandez-Alvarez Raquel Nieto Luis Gimeno 《Tropical Cyclone Research and Review》 2022年第2期76-87,共12页
Tropical cyclone(TC)-related rainfall mostly depends on the atmospheric moisture uptake from local and remote sources.In this study,the mean water vapour residence time(MWVRT)was computed for precipitation related to ... Tropical cyclone(TC)-related rainfall mostly depends on the atmospheric moisture uptake from local and remote sources.In this study,the mean water vapour residence time(MWVRT)was computed for precipitation related to TCs in each basin and on a global scale by applying a Lagrangian moisture source diagnostic method.According to our results,the highest MWVRT was found for the TCs over the South Indian Ocean and South Pacific Ocean basins(~3.08 days),followed by the Western North Pacific Ocean,Central and East North Pacific Ocean,North Indian Ocean,and North Atlantic Ocean basins(which exhibited values of 2.98,2.94,2.85,and 2.72 days,respectively).We also found a statistically significant(p<0.05)decrease in MWVRT,at a rate of~2.4 h/decade in the North Indian Ocean and~1.0 h/decade in the remaining basins.On average,the MWVRT decreased during the 24 h before TCs made landfall,and the atmospheric parcels precipitated faster after evaporation when TCs moved over land than over the ocean.Further research should focus on the relationship between global warming and MWVRT of atmospheric parcels that precipitate over TC positions. 展开更多
关键词 tropical cyclones Water vapour residence time Lagrangian approach tropical cyclones precipitation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部