期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Heisenberg群中带奇异权的最优临界Hardy-Trudinger-Moser不等式
1
作者 蔺闯 胡云云 窦井波 《纯粹数学与应用数学》 2024年第1期27-43,共17页
本文建立了Heisenberg群中有界域和一般无界域上带奇异权的最优临界Hardy-Trudinger-Moser不等式.克服临界Hardy不等式和奇异权函数带来的困难,利用带奇异权的Trudinger-Moser不等式和一些基本估计建立了有界域上一般的带奇异权的临界Ha... 本文建立了Heisenberg群中有界域和一般无界域上带奇异权的最优临界Hardy-Trudinger-Moser不等式.克服临界Hardy不等式和奇异权函数带来的困难,利用带奇异权的Trudinger-Moser不等式和一些基本估计建立了有界域上一般的带奇异权的临界Hardy-Trudinger-Moser不等式,并通过选取适当的Moser函数得到了最佳常数.最后,利用分割积分区域的方法得到了一般无界域上带奇异权的最优临界Hardy-Trudinger-Moser不等式. 展开更多
关键词 HEISENBERG群 奇异权函数 trudinger-moser不等式 Hardy-trudinger-moser不等式 最佳常数
下载PDF
负幂次对数加权的Trudinger-Moser不等式
2
作者 朱茂春 马盼 《应用数学》 北大核心 2024年第1期73-79,共7页
本文研究具有负幂次对数加权的Trudinger-Moser不等式.通过建立了一个径向引理,利用著名的Leckband泛函不等式证明了Calanchi和Ruf(2015)得到的对数加权Trudinger-Moser不等式在负幂次情形依然成立.
关键词 径向 负幂次 对数加权 trudinger-moser不等式
下载PDF
Cartan-Hadamard流形上关于Lorentz范数的Trudinger-Moser不等式
3
作者 张佳杰 《数学杂志》 2024年第4期283-292,共10页
本文研究了Cartan-Hadamard流形上带Lorentz范数的Trudinger-Moser不等式.利用了相关格林函数的逐点估计以及O’Neil不等式,我们得到了该不等式的最佳常数,推广了相应欧氏空间上的结果.
关键词 trudinger-moser不等式 LORENTZ空间 RIEMANNIAN流形 负曲率 最佳常数
下载PDF
一维直线上的奇异型Trudinger-Moser不等式
4
作者 朱茂春 刘杰 《数学杂志》 2021年第3期219-226,共8页
本文研究了一维直线上的奇异型Trudinger-Moser不等式.利用分数次Sobolev空间上函数的Green表示公式,得到了一类奇异型Trudinger-Moser不等式.进一步利用合适的测试函数序列验证了不等式中常数的最佳性.这一结果将高维空间上的奇异型Tru... 本文研究了一维直线上的奇异型Trudinger-Moser不等式.利用分数次Sobolev空间上函数的Green表示公式,得到了一类奇异型Trudinger-Moser不等式.进一步利用合适的测试函数序列验证了不等式中常数的最佳性.这一结果将高维空间上的奇异型Trudinger-Moser不等式推广到了一维情形. 展开更多
关键词 trudinger-moser不等式 分数次Sobolev空间 重排 最佳常数
下载PDF
二维空间上对数加权各向异性范数约束下的Trudinger-Moser不等式
5
作者 朱茂春 陈文欢 《应用数学》 CSCD 北大核心 2022年第4期766-775,共10页
本文研究二维空间上一类各向异性对数加权径向Sobolev空间上的Trudinger-Moser不等式.通过建立一个重要的径向引理,并利用著名的Leckband泛函不等式得到了对数加权约束下的最佳Trudinger-Moser增长指标,特别地,我们得到在极限情形β=1下... 本文研究二维空间上一类各向异性对数加权径向Sobolev空间上的Trudinger-Moser不等式.通过建立一个重要的径向引理,并利用著名的Leckband泛函不等式得到了对数加权约束下的最佳Trudinger-Moser增长指标,特别地,我们得到在极限情形β=1下,Trudinger-Moser最佳增长为双指数形式增长.通过构造合适的测试函数序列证明了对数加权的Trudinger-Moser不等式中常数的最佳性. 展开更多
关键词 各向异性 径向 对数加权 trudinger-moser不等式
下载PDF
Trudinger-Moser不等式的两种证明方法
6
作者 黄玫瑾 《吉林化工学院学报》 CAS 2022年第11期93-96,共4页
Trudinger-Moser不等式在研究带有临界指数增长非线性项偏微分方程解的存在性问题上有着重要的应用.在径向空间中利用施瓦兹对称重排,基于单位分解的技巧取截断函数是证明Trudinger-Moser不等式的两种主要方法.
关键词 trudinger-moser不等式 对称重排 单位分解
下载PDF
Extremal Functions for an Improved Trudinger-Moser Inequality Involving L^(P)-Norm in R^(n)
7
作者 YANG Liu LI Xiaomeng 《Journal of Partial Differential Equations》 CSCD 2023年第4期414-434,共21页
Let W^(1,n)(R^(n))be the standard Sobolev space.For any T>0 and p>n>2,we denote■Define a norm in W^(1,n)(R^(n))by■where 0≤α<λ_(n,p).Using a rearrangement argument and blow-up analysis,we will prove■c... Let W^(1,n)(R^(n))be the standard Sobolev space.For any T>0 and p>n>2,we denote■Define a norm in W^(1,n)(R^(n))by■where 0≤α<λ_(n,p).Using a rearrangement argument and blow-up analysis,we will prove■can be attained by some function u_(0)∈W^(1,n)(R^(n))∩C^(1)(R^(n))with ||u_(0)||_(n,p)=1,here a_(n)=n■_(n-1)^(1/n-1) and ■_(n-1) is the measure of the unit sphere in R^(n). 展开更多
关键词 trudinger-moser inequality extremal function blow-up analysis
原文传递
A Remark on Hardy-Trudinger-Moser Inequality 被引量:1
8
作者 LUO Qianjin FANG Yu 《Journal of Partial Differential Equations》 CSCD 2018年第4期353-373,共21页
Let IB be the unit disc in R^2,H be the completion of C∞0(B)under the norm||u||H=(∫B|▽u|^2dx-∫Bu^2/(1-|x^2|^2dx)^1/2,■u∈C∞0(B).Using blow-up analysis,we prove that for anyγ≤4π,the supremum sup u∈H,||u||1,h... Let IB be the unit disc in R^2,H be the completion of C∞0(B)under the norm||u||H=(∫B|▽u|^2dx-∫Bu^2/(1-|x^2|^2dx)^1/2,■u∈C∞0(B).Using blow-up analysis,we prove that for anyγ≤4π,the supremum sup u∈H,||u||1,h≤1∫Beγu^2dx can be attained by some function u0∈H with||u0||1,h=1,where is a decreasingly nonnegative,radially symmetric function,and satisfies a coercive cond让ion.Namely there exists a constantδ>0 satisfying||u||21,h=||u||2H-∫Bhu^2dx≥δ||u||H^2,■u∈H.This extends earlier results of Wang-Ye[1]and Yang-Zhu[2]. 展开更多
关键词 Hardy-trudinger-moser INEQUALITY trudinger-moser INEQUALITY BLOW-UP ANALYSIS
原文传递
A generalized Trudinger-Moser inequality on a compact Riemannian surface with conical singularities 被引量:4
9
作者 Xiaobao Zhu 《Science China Mathematics》 SCIE CSCD 2019年第4期699-718,共20页
In this paper, using the method of blow-up analysis, we establish a generalized Trudinger-Moser inequality on a compact Riemannian surface with conical singularities. Precisely, let(Σ, D) be such a surface∑with divi... In this paper, using the method of blow-up analysis, we establish a generalized Trudinger-Moser inequality on a compact Riemannian surface with conical singularities. Precisely, let(Σ, D) be such a surface∑with divisor D =Σ_(i=1)~mβ_(ipi), where β_i >-1 and p_i ∈Σ for i = 1,..., m, and g be a metric representing D.Denote b_0 = 4π(1 + min_(1≤i≤mβ_i). Suppose ψ : Σ→ R is a continuous function with ∫_Σψdv_g ≠0 and define■Then for any α∈ [0, λ_1^(**)(Σ, g)), we have■When b > b0, the integrals■are still finite, but the supremum is infinity. Moreover, we prove that the extremal function for the above inequality exists. 展开更多
关键词 trudinger-moser INEQUALITY the EXTREMAL function BLOW-UP analysis conical SINGULARITY
原文传递
A critical Trudinger-Moser inequality involving a degenerate potential and nonlinear Schrodinger equations 被引量:1
10
作者 Lu Chen Guozhen Lu Maochun Zhu 《Science China Mathematics》 SCIE CSCD 2021年第7期1391-1410,共20页
The classical critical Trudinger-Moser inequality in R^(2)under the constraint∫_(R_(2))(|▽u|^(2)+|u|^(2))dx≤1 was established through the technique of blow-up analysis or the rearrangement-free argument:for anyτ&g... The classical critical Trudinger-Moser inequality in R^(2)under the constraint∫_(R_(2))(|▽u|^(2)+|u|^(2))dx≤1 was established through the technique of blow-up analysis or the rearrangement-free argument:for anyτ>0,it holds that sup u∈H^(1)(r^(2)fR^(2)(τ|U|^(2)+|▽u|^(2)dx≤1∫_(R^(2)(E^4π|u|^(2)-1)dx≤C(τ)<+∞)))and 4πis sharp.However,if we consider the less restrictive constraint∫_(R_(2))(|▽u|^(2)+|u|^(2))dx≤1,where V(x)is nonnegative and vanishes on an open set in R^(2),it is unknown whether the sharp constant of the Trudinger-Moser inequality is still 4π.The loss of a positive lower bound of the potential V(x)makes this problem become fairly nontrivial.The main purpose of this paper is twofold.We will first establish the Trudinger-Moser inequality sup u∈H^(1)(r^(2)fR^(2)(τ|U|^(2)+|▽u|^(2)dx≤1∫_(R^(2)(E^4π|u|^(2)-1)dx≤C(τ)<+∞)))when V is nonnegative and vanishes on an open set in R^(2).As an application,we also prove the existence of ground state solutions to the following Sciridinger equations with critical exponeitial growth:-Δu+V(x)u=f u)in R^(2),(0.1)where V(x)≥0 and vanishes on an open set of R^(2)and f has critical exponential growth.Having a positive constant lower bound for the potential V(x)(e.g.,the Rabinowitz type potential)has been the standard assumption when one deals with the existence of solutions to the above Schrodinger equations when the nonlinear term has the exponential growth.Our existence result seems to be the first one without this standard assumption. 展开更多
关键词 trudinger-moser inequalities degenerate potential ground state solutions Schrodinger equations Nehari manifold
原文传递
A New Proof of Subcritical Trudinger-Moser Inequalities on the Whole Euclidean Space 被引量:1
11
作者 YANG Yunyan ZHU Xiaobao 《Journal of Partial Differential Equations》 2013年第4期300-304,共5页
In this note, we give a new proof of subcritical Trudinger-Moser inequality on R^n. All the existing proofs on this inequality are based on the rearrangement ar-gument with respect to functions in the Sobolev space W^... In this note, we give a new proof of subcritical Trudinger-Moser inequality on R^n. All the existing proofs on this inequality are based on the rearrangement ar-gument with respect to functions in the Sobolev space W^1,n (R^n). Our method avoids this technique and thus can be used in the Riemamlian manifold case and in the entire Heisenberg group. 展开更多
关键词 trudinger-moser inequality Adams inequality.
原文传递
Finsler Trudinger-Moser inequalities on R^(2)
12
作者 Nguyen Tuan Duy Le Long Phi 《Science China Mathematics》 SCIE CSCD 2022年第9期1803-1826,共24页
The first aim of this article is to study the sharp singular(two-weight)Trudinger-Moser inequalities with Finsler norms on R^(2).The second goal is to propose a different approach to study a vanishing-concentration-co... The first aim of this article is to study the sharp singular(two-weight)Trudinger-Moser inequalities with Finsler norms on R^(2).The second goal is to propose a different approach to study a vanishing-concentration-compactness principle for the Trudinger-Moser inequalities and use this to investigate the existence and the nonexistence of the maximizers for the Trudinger-Moser inequalities in the subcritical regions.Finally,by applying our Finsler Trudinger-Moser inequalities to suitable Finsler norms,we derive the sharp affine Trudinger-Moser inequalities which are essentially stronger than the Trudinger-Moser inequalities with standard energy of the gradient. 展开更多
关键词 trudinger-moser inequality Finsler norm sharp constants extremal functions affine energy
原文传递
Critical Trace Trudinger-Moser Inequalities on a Compact Riemann Surface with Smooth Boundary
13
作者 Mengjie ZHANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2022年第3期425-442,共18页
In this paper,the author concerns two trace Trudinger-Moser inequalities and obtains the corresponding extremal functions on a compact Riemann surface(Σ,g)with smooth boundaryθΣ.Explicitly,letλ_(1)(θΣ)=inf_(u∈W... In this paper,the author concerns two trace Trudinger-Moser inequalities and obtains the corresponding extremal functions on a compact Riemann surface(Σ,g)with smooth boundaryθΣ.Explicitly,letλ_(1)(θΣ)=inf_(u∈W^(1,2)(Σ,g),∫_(θΣ)uds_(g)=0,u≠0∫_(Σ)(|▽_(g)u|^(2)+u^(2))dv_(g)/∫_(θΣ)u^(2)ds_(g)and H={u∈W^(1,2)(Σ,g):∫_(Σ)(|▽_(g)u|^(2)+u^(2))dv_(g)-α∫_(θΣ)u^(2)ds_(g)≤1 and∫_(θΣ)uds_(g)=0},where W^(1,2)(Σ,g)denotes the usual Sobolev space and▽g stands for the gradient operator.By the method of blow-up analysis,we obtain sup_(u∈H)∫_(θΣ)e^(πu^(2))ds_(g){<+∞,0≤α﹤λ_(1)(∂Σ),=+∞,α≥λ_(1)(∂Σ)Moreover,the author proves the above supremum is attained by a function u∈H∩C^(∞)(∑)for any 0≤α<λ_(1)(θΣ).Further,he extends the result to the case of higher order eigenvalues.The results generalize those of[Li,Y.and Liu,P.,Moser-Trudinger inequality on the boundary of compact Riemannian surface,Math.Z.,250,2005,363–386],[Yang,Y.,Moser-Trudinger trace inequalities on a compact Riemannian surface with boundary,Pacific J.Math.,227,2006,177–200]and[Yang,Y.,Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two,J.Diff.Eq.,258,2015,3161–3193]. 展开更多
关键词 trudinger-moser inequality Riemann surface Blow-up analysis Extremal function
原文传递
全空间上与Trudinger-Moser-Lorentz不等式相关的集中紧性原理
14
作者 朱茂春 李栋梁 《应用数学学报》 CSCD 北大核心 2021年第2期294-306,共13页
本文研究了全空间上与Trudinger-Moser-Lorentz不等式相关的集中紧性原理.利用函数的水平截断方法,我们将有界区域上与Trudinger-Moser-Lorentz不等式相关的集中紧性原理推广到了无界区域上.此外,我们还构造了试验函数验证了结论的最佳性.
关键词 trudinger-moser不等式 LORENTZ空间 最佳常数 重排 集中紧性原理
原文传递
Singular Supercritical Trudinger-Moser Inequalities and the Existence of Extremals
15
作者 Xu Min WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第8期873-888,共16页
In this paper,we present the singular supercritical Trudinger-Moser inequalities on the unit ball B in Rn,where n≥2.More precisely,we show that for any given α>0 and 0<t<n,then the following two inequalitie... In this paper,we present the singular supercritical Trudinger-Moser inequalities on the unit ball B in Rn,where n≥2.More precisely,we show that for any given α>0 and 0<t<n,then the following two inequalities hold for ∀u∈W^1,n0,r(B),∫Bsup∣▽u∣^ndx≤1∫Bexp((αn,t+∣x∣^α∣)u∣^n/n-1)/∣x∣^tdx<∞ and ∫Bsup∣▽u∣^ndx≤1∫Bexp(αn,t+∣u∣^n/n-1+∣x∣^α)/∣x∣^tdx<∞.We also consider the problem of the sharpness of the constantαn,t.Furthermore,by employing the method of estimating the lower bound and using the concentration-compactness principle,we establish the existence of extremals.These results extend the known results when t=0 to the singular version for 0<t<n. 展开更多
关键词 Singular supercritical trudinger-moser inequality radial lemma concentration-compactness principle extremal functions
原文传递
A Weak Trudinger-Moser Inequality with a Singular Weight on a Compact Riemannian Surface
16
作者 Xiaobao Zhu 《Communications in Mathematics and Statistics》 SCIE 2017年第1期37-57,共21页
Let(∑,g)be a compact Riemannian surface,pj∈∑,βj>-1,forj=1,..i,m.Denoteβ=min{0,β1……Bm}.Let H∈C^(0)(∑)be a positivefunction and h(x)=H(x)(dg(x,pj))^(2βj),where dg(x,pj)denotes the geodesic distance between... Let(∑,g)be a compact Riemannian surface,pj∈∑,βj>-1,forj=1,..i,m.Denoteβ=min{0,β1……Bm}.Let H∈C^(0)(∑)be a positivefunction and h(x)=H(x)(dg(x,pj))^(2βj),where dg(x,pj)denotes the geodesic distance between x and p;for each j=1,...,m.In this paper,using a method of blow-up analysis,we prove that the functional J(u)=1/2∫∑|ΔgU|^(2)dV_(g)+8π(1+β)1/volg(∑)∫∑udvg-8π(1+β)log∫_(∑)he^(U)dv_(g)is bounded from below on the Sobolev space w^(1,2)(g). 展开更多
关键词 trudinger-moser inequality Variational method Blow-up analysis Singular weight
原文传递
Trudinger-Moser Type Inequality Under Lorentz-Sobolev Norms Constraint
17
作者 ZHU Maochun ZHENG Yifeng 《Journal of Partial Differential Equations》 CSCD 2021年第2期116-128,共13页
In this paper,we are concerned with a sharp fractional Trudinger-Moser type inequality in bounded intervals of IR under the Lorentz-Sobolev norms constraint.For any 1<q<∞andβ≤(√π)q'≡βq'q'=q/q-... In this paper,we are concerned with a sharp fractional Trudinger-Moser type inequality in bounded intervals of IR under the Lorentz-Sobolev norms constraint.For any 1<q<∞andβ≤(√π)q'≡βq'q'=q/q-1,we obtain u∈Н1/2,2(I),^sup||(-△)1/4u||2,q≤1^(∫Ieβ|u(x)|q'dx≤c0|I|),andβq is optimal in the sense that u∈Н1/2,2(I),^sup||(-△)1/4u||2,q≤1^(∫Ieβ|u(x)|q'dx+∞),for anyβ>βq.Furthermore,when q is even,we obtain u∈Н1/2,2(I),^sup||(-△)1/4u||2,q≤1^(∫Ih(u)eβq|u(x)|q')dx≤+∞),for any function h:[0,∞→[0,∞)with lim t→∞h(t)=∞.As for the key tools of proof,we use Green functions for fractional Laplace operators and the rearrangement of a convolution to the rearrangement of the convoluted functions. 展开更多
关键词 trudinger-moser inequality Lorentz-Sobolev space bounded intervals
原文传递
A Weighted Singular Trudinger-Moser Inequality
18
作者 YU Pengxiu 《Journal of Partial Differential Equations》 CSCD 2022年第3期208-222,共15页
In this paper,we obtained the extremal function for a weighted singular Trudinger-Moser inequality by blow-up analysis in the Euclidean space R^(2).This extends recent results of Hou(J.Inequal.Appl.,2018)and similar r... In this paper,we obtained the extremal function for a weighted singular Trudinger-Moser inequality by blow-up analysis in the Euclidean space R^(2).This extends recent results of Hou(J.Inequal.Appl.,2018)and similar result was proved by Zhu(Sci.China Math.,2021). 展开更多
关键词 Singular trudinger-moser inequality extremal function blow-up analysis
原文传递
Extremal Functions for Trudinger-Moser Type Inequalities in RN
19
作者 LI Xiaomeng 《Journal of Partial Differential Equations》 CSCD 2017年第1期64-75,共12页
Let N≥2, aN=Nω1 N-1(N-1) , where ωN-1 denotes the area of the unit sphere in RN. In this note, we prove that for any 0 〈a〈aN and any β 〉 0, the supremum sup u∈W 1,N(R N),||u||W 1,N(R N)≤1 ∫ R N |... Let N≥2, aN=Nω1 N-1(N-1) , where ωN-1 denotes the area of the unit sphere in RN. In this note, we prove that for any 0 〈a〈aN and any β 〉 0, the supremum sup u∈W 1,N(R N),||u||W 1,N(R N)≤1 ∫ R N |u|β (e a |u| N/N-1 N-2 ∑j=0 aj/j!|u| Ni/N-1)dx.can be attained by some function u ∈ W1, N (R N) with || u || W 1,N (R N ) = 1. Moreover, when a ≥ aN, the above supremum is infinity. 展开更多
关键词 Extremal function trudinger-moser inequality.
原文传递
A Singular Trudinger-Moser Inequality in Hyperbolic Space
20
作者 ZHU Xiaobao 《Journal of Partial Differential Equations》 CSCD 2015年第1期39-46,共8页
In this paper, we establish a singular Trudinger-Moser inequality for the whole hyperbolic space H^n:u∈W^1,n(H^n),^sup,fH^n| H^nu|^ndμ≤1∫H^n ea|u|n/n-1-∑^n-2a^k|u|nk/n-1 k=0 k!/ρβ dμ〈∞ a/an+β/n≤1... In this paper, we establish a singular Trudinger-Moser inequality for the whole hyperbolic space H^n:u∈W^1,n(H^n),^sup,fH^n| H^nu|^ndμ≤1∫H^n ea|u|n/n-1-∑^n-2a^k|u|nk/n-1 k=0 k!/ρβ dμ〈∞ a/an+β/n≤1,where α 〉 0,β E [0,n), ρ and dμ are the distance function and volume element of H^n respectively. 展开更多
关键词 Singular trudinger-moser inequlity hyperbolic space.
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部