期刊文献+
共找到437篇文章
< 1 2 22 >
每页显示 20 50 100
Microdynamic mechanical properties and fracture evolution mechanism of monzogabbro with a true triaxial multilevel disturbance method
1
作者 Zhi Zheng Bin Deng +3 位作者 Hong Liu Wei Wang Shuling Huang Shaojun Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期385-411,共27页
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the... The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated. 展开更多
关键词 true triaxial disturbance test Mechanical properties Fracture evolution mechanism Disturbance-induced damage evolution Failure mechanism and precursor
下载PDF
Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths
2
作者 Zhi Zheng Hongyu Xu +3 位作者 Kai Zhang Guangliang Feng Qiang Zhang Yufei Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期117-136,共20页
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona... Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads. 展开更多
关键词 true triaxial static and disturbance test Mechanical properties Failure mechanism and precursor Intermittent disturbance effect Fractional mechanical model
下载PDF
Experimental and numerical study on dynamic mechanical behaviors of shale under true triaxial compression at high strain rate
3
作者 Xiaoping Zhou Linyuan Han +1 位作者 Jing Bi Yundong Shou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期149-165,共17页
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ... High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data. 展开更多
关键词 Dynamic behaviors true triaxial compression High strain rates Dynamic failure mechanism PFC3D-FLAC3D coupled method
下载PDF
Anisotropic strength,deformation and failure of gneiss granite under high stress and temperature coupled true triaxial compression
4
作者 Hongyuan Zhou Zaobao Liu +2 位作者 Fengjiao Liu Jianfu Shao Guoliang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期860-876,共17页
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ... The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects. 展开更多
关键词 Anisotropic strength and deformation true triaxial compression Thermal mechanical coupling Deep rock mechanics High temperature rock mechanics
下载PDF
Effects of intermediate stress on deep rock strainbursts under true triaxial stresses 被引量:1
5
作者 Lihua Hu Liyuan Yu +2 位作者 Minghe Ju Xiaozhao Li Chun’an Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期659-682,共24页
The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in si... The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in situ stress conditions(i.e.high tangential stress,moderate intermediate stress and low radial stress)of near-boundary rock masses are performed.Compared with the experimental results,the DEM model is able to capture the stress-strain response,failure pattern and energy balance of strainbursts.The fracturing processes of strainbursts are also numerically reproduced.Numerical results show that,as the intermediate stress increases:(1)The peak strain of strainbursts increases,the yield stress increases,the rock strength increases linearly,and the ratio of yield stress to rock strength decreases,indicating that the precursory information on strainbursts is enhanced;(2)Tensile and shear cracks increase significantly,and slabbing and bending of rock plates are more pronounced;and(3)The stored elastic strain energy and dissipated energy increase linearly,whereas the kinetic energy of the ejected rock fragments increases approximately exponentially,implying an increase in strainburst intensity.By comparing the experimental and numerical results,the effect of intermediate stress on the rock strength of strainbursts is discussed in order to address three key issues.Then,the Mogi criterion is applied to construct new strength criteria for strainbursts by converting the one-face free true triaxial stress state of a strainburst to its equivalent true triaxial stress state.In summary,the effect of intermediate stress on strainbursts is a double-edged sword that can enhance the rock strength and the precursory information of a strainburst,but also increase its intensity. 展开更多
关键词 Strainbursts Intermediate stress Distinct element method(DEM) Structural failure true triaxial Strength criterion
下载PDF
Experimental study of the dynamic mechanical responses and failure characteristics of coal under true triaxial confinements 被引量:1
6
作者 Zhanguo Ma Pengfei Yan +3 位作者 Shixing Cheng Peng Gong Fuzhou Qi Jianguo Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期761-772,共12页
Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson b... Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions. 展开更多
关键词 COAL true triaxial SHPB test Dynamic mechanical properties Failure characteristics
下载PDF
Mutual impact of true triaxial stress, borehole orientation and bedding inclination on laboratory hydraulic fracturing of Lushan shale 被引量:1
7
作者 Yongfa Zhang Anfa Long +2 位作者 Yu Zhao Arno Zang Chaolin Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3131-3147,共17页
Unconventional resources like shale gas has been the focus of intense research and development for two decades. Apart from intrinsic geologic factors that control the gas shale productivity (e.g. organic matter conten... Unconventional resources like shale gas has been the focus of intense research and development for two decades. Apart from intrinsic geologic factors that control the gas shale productivity (e.g. organic matter content, bedding planes, natural fractures, porosity and stress regime among others), external factors like wellbore orientation and stimulation design play a role. In this study, we present a series of true triaxial hydraulic fracturing experiments conducted on Lushan shale to investigate the interplay of internal factors (bedding, natural fractures and in situ stress) and external factors (wellbore orientation) on the growth process of fracture networks in cubic specimens of 200 mm in length. We observe relatively low breakdown pressure and fracture propagation pressure as the wellbore orientation and/or the maximum in situ stress is subparallel to the shale bedding plane. The wellbore orientation has a more prominent effect on the breakdown pressure, but its effect is tapered with increasing angle of bedding inclination. The shale breakdown is followed by an abrupt response in sample displacement, which reflects the stimulated fracture volume. Based on fluid tracer analysis, the morphology of hydraulic fractures (HF) is divided into four categories. Among the categories, activation of bedding planes (bedding failure, BF) and natural fractures (NF) significantly increase bifurcation and fractured areas. Under the same stress regime, a horizontal wellbore is more favorable to enhance the complexity of hydraulic fracture networks. This is attributed to the relatively large surface area in contact with the bedding plane for the horizontal borehole compared to the case with a vertical wellbore. These findings provide important references for hydraulic fracturing design in shale reservoirs. 展开更多
关键词 true triaxial hydraulic fracturing experiment In situ stress state Bedding planes Natural fractures Wellbore orientation Shale reservoirs
下载PDF
A testing system to understand rock fracturing processes induced by different dynamic disturbances under true triaxial compression 被引量:1
8
作者 Xia-Ting Feng Mian Tian +1 位作者 Chengxiang Yang Benguo He 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期102-118,共17页
In this context,a testing system to understand rock fracturing processes induced by different dynamic disturbances under true triaxial compression was developed.The system is mainly composed of a static loading subsys... In this context,a testing system to understand rock fracturing processes induced by different dynamic disturbances under true triaxial compression was developed.The system is mainly composed of a static loading subsystem,a dynamic loading subsystem,a specimen box subsystem,and a data measurement subsystem.The static loading subsystem uses low stiffness loss frame structure technology,which greatly improves the frame stiffness in the three principal stress directions(up to 20 GN/m)and ensures the demand of the disturbance experiment in both the prepeak and postpeak stages.The disturbance loads with frequency of 0e20 Hz and stress level of 0e30 MPa were applied using large flow parallel oil source technology characterized with high heat dissipation efficiency.For the disturbance loads with frequency of 100e500 Hz and stress level of 0e30 MPa,they were realized by using high-frequency and centimeter-per-second-scale low-speed disturbance rod technology.Three rigid self-stabilizing specimen boxes were utilized to provide support for the specimen and deformation sensors,ensuring the stability and accuracy of the data obtained.To verify the performance of the true triaxial test system,disturbance experiments were conducted on granite specimens.The results show that the experimental device satisfies the requirements of original design,with an excellent repeatability and reliable testing results. 展开更多
关键词 Low-frequency and low-amplitude full surface disturbance true triaxial system Prepeak and postpeak dynamic disturbance Rockburst-induced stress wave Blasting-induced stress wave Hard rock
下载PDF
A rigid true triaxial apparatus for analyses of deformation and failure features of deep weak rock under excavation stress paths
9
作者 Xia-Ting Feng Xiaojun Yu +2 位作者 Yangyi Zhou Chengxiang Yang Feiyan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1065-1075,共11页
The squeezing scenario in deep weak rock tunnels can hinder underground construction.However,due to the limitations of test technologies at hand,the real excavation stress path cannot be mimicked in the laboratory.Thu... The squeezing scenario in deep weak rock tunnels can hinder underground construction.However,due to the limitations of test technologies at hand,the real excavation stress path cannot be mimicked in the laboratory.Thus,the large deformation mechanism of deep weak rocks still remains unclear.For this,a true triaxial apparatus(TTA)to investigate the mechanical responses of deep weak rock under excavation stress paths in field and reveal the squeezing mechanism of deep tunnels is assembled and developed at Northeastern University,China.The apparatus can perform instantaneous unloading in s3 direction based on electromagnetism technology.In addition,uniform loading and deformation measurements can be carried out based on the proposed linked interlocking clamp and antifriction device,even if the sample has a strong dilatation deformation performance.Next,a bore trepanning is designed to capture noiseless acoustic emission(AE)signals for deep weak rock at a low threshold.Finally,two tests were are conducted using this instrument to preliminarily understand the failure and deformation features of deep weak rock based on fractured marble.The results show that the complete stressestrain curves of fractured marble have the characteristics of low strengths and large deformations,and the larger deformation and the more serious failure occur when the fractured marble enters the post-peak state after excavation.The results show that the developed apparatus is likely to be applicable for deep weak rock engineering. 展开更多
关键词 true triaxial apparatus(TTA) Deep weak rock Large deformation Excavation stress path Instantaneous unloading
下载PDF
A true triaxial strength criterion for rocks by gene expression programming
10
作者 Jian Zhou Rui Zhang +1 位作者 Yingui Qiu Manoj Khandelwal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2508-2520,共13页
Rock strength is a crucial factor to consider when designing and constructing underground projects.This study utilizes a gene expression programming(GEP)algorithm-based model to predict the true triaxial strength of r... Rock strength is a crucial factor to consider when designing and constructing underground projects.This study utilizes a gene expression programming(GEP)algorithm-based model to predict the true triaxial strength of rocks,taking into account the influence of rock genesis on their mechanical behavior during the model building process.A true triaxial strength criterion based on the GEP model for igneous,metamorphic and magmatic rocks was obtained by training the model using collected data.Compared to the modified Weibols-Cook criterion,the modified Mohr-Coulomb criterion,and the modified Lade criterion,the strength criterion based on the GEP model exhibits superior prediction accuracy performance.The strength criterion based on the GEP model has better performance in R2,RMSE and MAPE for the data set used in this study.Furthermore,the strength criterion based on the GEP model shows greater stability in predicting the true triaxial strength of rocks across different types.Compared to the existing strength criterion based on the genetic programming(GP)model,the proposed criterion based on GEP model achieves more accurate predictions of the variation of true triaxial strength(s1)with intermediate principal stress(s2).Finally,based on the Sobol sensitivity analysis technique,the effects of the parameters of the three obtained strength criteria on the true triaxial strength of the rock are analysed.In general,the proposed strength criterion exhibits superior performance in terms of both accuracy and stability of prediction results. 展开更多
关键词 Gene expression programming(GEP) true triaxial strength Rock failure criteria Intermediate principal stress
下载PDF
Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress:A review 被引量:19
11
作者 Heping Xie Jun Lu +2 位作者 Cunbao Li Minghui Li Mingzhong Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期915-950,共36页
It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_... It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_(3))due to the influences of geological structures and engineering disturbances.It is therefore essential to study the mechanical,seepage,and dynamic disaster behaviors of deep rock under true triaxial stress to ensure the safe operation of deep rock engineering and the efficient exploitation of deep resources.In recent years,experimental techniques and research on true triaxial rock mechanics have achieved fruitful results that have promoted the rapid development of deep rock mechanics;thus,it is necessary to systematically review and summarize these developments.This work first introduced several typical true triaxial testing apparatus and then reviewed the corresponding research progress on rock deformation,strength,failure mode,brittleness,and energy as well as the 3D volumetric fracturing(dynamic disaster)properties of deep rocks under true triaxial stress.Then,several commonly used true triaxial rock strength criteria and their applicability,the permeability characteristics and mathematical models of deep reservoir rocks,and the disaster-causing processes and mechanisms of disturbed volumetric fracturing(rockburst,compound dynamic disasters)in deep rock engineering were described.This work may provide an essential reference for addressing the true triaxial rock mechanics issues involved in deep rock engineering,especially regarding the stability of surrounding rock at depth,disaster prevention and control,and oil and gas exploitation. 展开更多
关键词 true triaxial stress Deep rock mass Mechanical properties Strength criterion Permeability characteristics Dynamic disaster
下载PDF
Investigation of the influence of intermediate principal stress on the dynamic responses of rocks subjected to true triaxial stress state 被引量:7
12
作者 Wei You Feng Dai +2 位作者 Yi Liu Hongbo Du Ruochen Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期913-926,共14页
Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal ... Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal stress,and minor principal stress,respectively)is essential to the safety of underground engineering.However,in the laboratory,it is difficult to maintain the constant true triaxial stress state of rocks during the dynamic testing process.Herein,a numerical servo triaxial Hopkinson bar(NSTHB)was developed to study the dynamic responses of rocks confronted with a true triaxial stress state,in which lateral stresses can maintain constant.The results indicate that the dynamic strength and elastic modulus of rocks increase with the rise of intermediate principal stressσ2,while the dynamic elastic modulus is independent of the dynamic strain rate.Simulated acoustic emission distributions indicate that the intermediate principal stressσ2 dramatically affects dynamic failure modes of triaxial confined rocks.Asσ2 increases,the failure pattern switches from a single diagonal shear zone into two parallel shear zones with a small slant.Moreover,a recent triaxial Hopkinson bar experimental system using three bar pairs is also numerically established,and the measuring discrepancies are identified between the two numerical bar systems.The proposed NSTHB system provides a controllable tool for studying the dynamic triaxial behavior of rocks. 展开更多
关键词 triaxial Hopkinson bar Intermediate principal stress Dynamic strength Failure modes Numerical simulation true triaxial stress
下载PDF
3D morphology and formation mechanism of fractures developed by true triaxial stress 被引量:4
13
作者 Bing Chen Baotang Shen +2 位作者 Shichuan Zhang Yangyang Li Haiyang Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1273-1284,共12页
As main part of underground rock mass,the three-dimensional(3D)morphology of natural fractures plays an important role in rock mass stability.Based on previous studies on 3D morphology,this study probes into the law a... As main part of underground rock mass,the three-dimensional(3D)morphology of natural fractures plays an important role in rock mass stability.Based on previous studies on 3D morphology,this study probes into the law and mechanism regarding the influence of the confining pressure constraints on 3D morphological features of natural fractures.First,fracture surfaces were obtained by true triaxial compression test and 3D laser scanning.Then 3D morphological parameters of fractures were calculated by using Grasselli’s model.The results show that the failure mode of granites developed by true triaxial stress can be categorized into tension failure and shear failure.Based on the spatial position of fractures,they can be divided into tension fracture surface,S-1 shear fracture surface,and S-2 shear fracture surface.Micro-failure of the tension fracture surface is dominated by mainly intergranular fracture;the maximum height of asperities on the fracture surface and the 3D roughness of fracture surfaces are influenced by σ_(3) only and they are greater than those of shear fracture surfaces,a lower overall uniformity than tension fracture surface.S-1 shear fracture surface and S-2 shear fracture surface are dominated by intragranular and intergranular coupling fracture.The maximum height of asperities on the fracture surface and 3D roughness of fracture surface are affected by σ_(1),σ_(2),and σ_(3).With the increase of σ_(2) or σ_(3),the cutting off of asperities on the fracture surface becomes more common,the maximum height of asperities and 3D roughness of fracture surface further decrease,and the overall uniformity gets further improved.The experimental results are favorable for selecting technical parameters of enhanced geothermal development and the safety of underground mine engineering. 展开更多
关键词 true triaxial stress Failure mode Fracture angle 3D morphology MICRO-FRACTURE
下载PDF
A novel true triaxial test system for microwave-induced fracturing of hard rocks 被引量:5
14
作者 Xia-Ting Feng Jiuyu Zhang +4 位作者 Chengxiang Yang Jun Tian Feng Lin Shiping Li Xiangxin Su 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期961-971,共11页
This study introduces a test system for microwave-induced fracturing of hard rocks under true triaxial stress.The test system comprises a true triaxial stress loading system,an open-ended microwaveinduced fracturing s... This study introduces a test system for microwave-induced fracturing of hard rocks under true triaxial stress.The test system comprises a true triaxial stress loading system,an open-ended microwaveinduced fracturing system,a data acquisition system,an acoustic emission(AE)monitoring system,and an auxiliary specimen loading system.Microwave-induced surface and borehole fracturing tests under true triaxial stress were fulfilled for the first time,which overcomes the problem of microwave leakage in the coupling loading of true triaxial stress and microwave.By developing the dynamic monitoring system,the thermal response and fracture evolution were obtained during microwave irradiation.The monitoring system includes the infrared thermometry technique for monitoring rock surface temperature,the distributed optic fiber sensing technique for monitoring temperature in borehole in rock,the AE technique and two-dimensional digital speckle correlation technique for monitoring the evolution of thermal damage and the rock fracturing process.To validate the advantages of the test system and investigate the characteristics of microwave-induced fracturing of hard rocks,the study demonstrates the experimental methods and results for microwave-induced surface and borehole fracturing under true triaxial stress.The results show that thermal cracking presented intermittent characteristics(calm eactiveecalm)during microwave-induced surface and borehole fracturing of basalt.In addition,true triaxial stress can inhibit the development and distribution of thermal cracks during microwave-induced surface fracturing.When microwave-induced borehole fracturing occurs,it promotes the distribution of thermal cracks in rock,but inhibits the width of cracks.The results also prove the reliability of the test system. 展开更多
关键词 Deep hard rock engineering true triaxial apparatus Microwave-induced fracturing of hard rocks Electromagnetic compatibility Dynamic monitoring Evolution of rock fracturing
下载PDF
New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength 被引量:2
15
作者 Rennie Kaunda 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期338-347,共10页
Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stre... Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types; (b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type; (c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects. 展开更多
关键词 Artificial neural networks Polyaxial loading Intermediate principal stress Rock failure criteria true triaxial test
下载PDF
Study on fracture propagation behavior in ultra-heavy oil reservoirs based on true triaxial experiments
16
作者 LIN Botao SHI Can +2 位作者 ZHUANG Li YOU Hongjuan HUANG Yong 《Petroleum Exploration and Development》 2020年第3期651-660,共10页
As the ultra-heavy oil reservoirs developed by steam assisted gravity drainage(SAGD)in the Fengcheng oilfield,Xinjiang have problems such as huge steam usage,long preheating period,low production,and inaccessible rese... As the ultra-heavy oil reservoirs developed by steam assisted gravity drainage(SAGD)in the Fengcheng oilfield,Xinjiang have problems such as huge steam usage,long preheating period,low production,and inaccessible reserve in local parts.Based on the rock mechanics and porosity/permeability characteristics of heavy oil reservoir and interlayer,a series of true triaxial experiments and CT tests considering the fracturing fluid injection rate,viscosity,perforation density and location of fracture initiation were conducted to disclose the propagation behavior of micro-and macro-fractures in the reservoirs and mudstone interlayers.These experiments show that fracturing in the heavy oil reservoirs only generates microfractures that cannot break the interlayer.In contrast,when fracturing in the interlayer,the higher the injection rate(greater than 0.6 m^3/min),the lower the viscosity,the easier it is to form macro-fractures in the interlayers,and the further the fractures will propagate into the reservoirs.Also,increasing perforation density tends to create complex macro-fracture network in the interbedded reservoirs and mudstone interlayers.The findings of this study can provide scientific guidance for the selection of fracturing layer and the optimization of parameters in the interlayer fracturing of heavy oil reservoirs. 展开更多
关键词 ultra-heavy oil SAGD mudstone interlayer muddy interlayer fracture propagation true triaxial test
下载PDF
Strength and deformation behaviour of coarse-grained soil by true triaxial tests 被引量:7
17
作者 施维成 朱俊高 +1 位作者 赵仲辉 刘汉龙 《Journal of Central South University》 SCIE EI CAS 2010年第5期1095-1102,共8页
In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil,a series of true triaxial tests were performed.The tests were conducted in a ... In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil,a series of true triaxial tests were performed.The tests were conducted in a recently developed true triaxial apparatus with constant minor principal stressσ3 and constant value of intermediate principal stress ratio b=(σ2-σ3) /(σ1-σ3) (σ1 is the vertical stress,andσ2 is the horizontal stress) .It is found that the intermediate principal strain,ε2,increases from negative to positive value with the increase of parameter b from zero to unity under a constant minor principal stress.The minor principal strain,ε3,is always negative.This implies that the specimen exhibits an evident anisotropy.The relationship between b and friction angle obtained from the tests is different from that predicted by LADE-DUNCAN and MATSUOKA-NAKAI criteria.Based on the test results,an empirical equation of g(b) that is the shape function of the failure surface onπ-plane was presented.The proposed equation is verified to be reasonable by comparing the predicted results using the equation with true triaxial test results of soils,such as coarse-grained soils in this study,sands and gravels in other studies. 展开更多
关键词 真三轴试验 强度特性 粗粒土 变形行为 中间主应力 应力应变 垂直应力 水平应力
下载PDF
An anisotropic constitutive model of geomaterials based on true triaxial testing and its application
18
作者 张坤勇 Frederick Nai Charkley 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1430-1442,共13页
Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construc... Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construction and water impounding process of a rock fill dam. The stress and strain relationships induced by the different loading methods were investigated. A remarkable stress-induced anisotropy under complex stress state was observed. Contrary to popular assumptions in traditional numerical analysis and constitutive models, it was found that different elastic modulus and Poisson ratio exist in different principal directions in rock fill dams. From the testing results, an anisotropic constitutive model based on Duncan-Chang nonlinear model is presented to overcome the limitations of axi-symmetric assumptions in conventional triaxial experiments and constitutive models. Both models were then applied in FEM analysis of an under-construction earth core high rock soil filled dam with the focus on hydraulic fracturing. The study reveals the major biases that exist when numerical analysis and constitutive models do not give serious consideration to the intermediate principal stress and anisotropy effects in soil rock built structures. 展开更多
关键词 true triaxial test STRESS induced ANISOTROPY CONSTITUTIVE model complex STRESS state finite element method (FEM)
下载PDF
Dilatancy equation of rockfill material under the true triaxial stress condition 被引量:9
19
作者 XIAO Yang 1,2,LIU HanLong 1,2,ZHU JunGao 1,2 & SHI WeiCheng 1,3 1 Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University,Nanjing 210098,China 2 Geotechnical Research Institute,Hohai University,Nanjing 210098,China 3 School of Civil Engineering and Architecture,Changzhou Institute of Technology,Changzhou 213002,China 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第S1期175-184,共10页
Rockfill material is widely used for construction of high rockfill dam due to its facility,economical cost,high strength and effective aseismatic property.It is provoked profoundly to propose a suitable constitutive m... Rockfill material is widely used for construction of high rockfill dam due to its facility,economical cost,high strength and effective aseismatic property.It is provoked profoundly to propose a suitable constitutive model for a better application of this material.The dilatancy equation of rockfill material plays a significant role in the constitutive model.For the sake of simplicity,a dilatancy equation is established by the linear least square method on the basis of the rearranged data of rockfill material in the true triaxial tests.Based on the fact that the rearranged data at different initial confining pressures are aligned in a narrow band,the dilatancy behavior of rockfill material is independent of the initial confining pressure.However,different from the initial confining pressure,both the intermediate principal stress ratio and the specimen density exhibit a remarkable influence on the dilatancy behaviors of rockfill material.Furthermore,the predictions of the proposed dilatancy equation are in a good agreement with the rearranged test data of rockfill material at different specimen densities and stress paths. 展开更多
关键词 ROCKFILL material DILATANCY equation true triaxial test density stress path INITIAL CONFINING pressure
原文传递
超临界CO_(2)脉动压裂-渗流耦合试验系统研制与应用
20
作者 刘佳佳 张云龙 +2 位作者 聂子硕 高志扬 许文松 《煤田地质与勘探》 EI CAS CSCD 北大核心 2024年第6期12-20,共9页
【目的】为了有效强化煤层气抽采效果,将脉动压裂与超临界CO_(2)压裂相结合,提出了利用超临界CO_(2)脉动压裂煤(岩)的新思路。【方法】自主研发了超临界CO_(2)脉动压裂-渗流耦合真三轴试验系统,介绍了该试验系统的主要结构、特点和功能... 【目的】为了有效强化煤层气抽采效果,将脉动压裂与超临界CO_(2)压裂相结合,提出了利用超临界CO_(2)脉动压裂煤(岩)的新思路。【方法】自主研发了超临界CO_(2)脉动压裂-渗流耦合真三轴试验系统,介绍了该试验系统的主要结构、特点和功能,然后开展了室内真三轴条件下超临界CO_(2)脉动压裂-渗流试验及超临界CO_(2)脉动压裂-声发射监测试验。该系统结合独立伺服系统与中央数字系统控制三向应力,采用双泵型恒速恒压泵脉动给压,具有高精度、全过程、真三轴、承载高温、高压及高应力的特点。【结果和结论】试验结果表明:超临界CO_(2)脉动压裂-渗流耦合真三轴试验系统可以实现良好的脉动压裂功能。超临界CO_(2)脉动压裂后,煤体渗透率较压裂前呈增大趋势,增大了2~9倍,且煤体渗透率皆呈现良好的指数变化规律。在声发射-超临界CO_(2)脉动压裂时期,煤体产生了新的裂隙通道,该通道由压裂孔中心直接贯穿至煤样表面,且可观测到超临界CO_(2)流体直接从煤中喷出,故超临界CO_(2)脉动压裂具有一定的扩展和连通裂隙的作用,能够有效提高煤层气的抽采效果。研究成果为强化深部低渗煤层增透技术提供了一定的试验支撑。 展开更多
关键词 超临界CO_(2) 脉动压裂 真三轴 渗流特性 声发射
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部