The truncated expansion method for finding explicit and exact soliton-like solution of variable coefficient nonlinear evolution equation was described. The crucial idea of the method was first the assumption that coef...The truncated expansion method for finding explicit and exact soliton-like solution of variable coefficient nonlinear evolution equation was described. The crucial idea of the method was first the assumption that coefficients of the truncated expansion formal solution are functions of time satisfying a set of algebraic equations, and then a set of ordinary different equations of undetermined functions that can be easily integrated were obtained. The simplicity and effectiveness of the method by application to a general variable coefficient KdV-MKdV equation with three arbitrary functions of time is illustrated.展开更多
Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Pain...Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.展开更多
Obtaining the new solutions for the nonlinear evolution equation is a hot topic. Benjamin<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-...Obtaining the new solutions for the nonlinear evolution equation is a hot topic. Benjamin<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Bona</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Mahony</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Burgers equation is this kind of equation,</span></span></span><span><span><b><span style="font-family:""> </span></b></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">he solutions are very interest. Several new exact solutions for the nonlinear equation are obtained by using truncated expansion method in this paper. The numerical simulations with different parameters for the new exact solutions of Benjamin</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Bona</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Mahony</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Burgers equation are given.</span></span></span>展开更多
Recently,the authors of[Commun.Theor.Phys.56(2011)397]made a number of useful observations on Exp-function method.In this study,we focus on another vital issue,namely,the misleading results of double Exp-function method.
The consistent tanh expansion(CTE) method is applied to the(2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explici...The consistent tanh expansion(CTE) method is applied to the(2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution,and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlev′e truncated expansion method.And we investigate interactive properties of solitons and periodic waves.展开更多
基金the Natural Science Foundation of Zhejiang Province of China (100039)
文摘The truncated expansion method for finding explicit and exact soliton-like solution of variable coefficient nonlinear evolution equation was described. The crucial idea of the method was first the assumption that coefficients of the truncated expansion formal solution are functions of time satisfying a set of algebraic equations, and then a set of ordinary different equations of undetermined functions that can be easily integrated were obtained. The simplicity and effectiveness of the method by application to a general variable coefficient KdV-MKdV equation with three arbitrary functions of time is illustrated.
基金Project supported by the National Key Basic Research Project of China (Grant No. 2004CB318000)the National Natural Science Foundation of China (Grant No. 10771072)
文摘Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.
文摘Obtaining the new solutions for the nonlinear evolution equation is a hot topic. Benjamin<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Bona</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Mahony</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Burgers equation is this kind of equation,</span></span></span><span><span><b><span style="font-family:""> </span></b></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">he solutions are very interest. Several new exact solutions for the nonlinear equation are obtained by using truncated expansion method in this paper. The numerical simulations with different parameters for the new exact solutions of Benjamin</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Bona</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Mahony</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Burgers equation are given.</span></span></span>
文摘Recently,the authors of[Commun.Theor.Phys.56(2011)397]made a number of useful observations on Exp-function method.In this study,we focus on another vital issue,namely,the misleading results of double Exp-function method.
基金Supported by the National Natural Science Foundation of Zhejiang Province under Grant No.LZ15A050001the National Natural Science Foundation of China under Grant No.11675146
文摘The consistent tanh expansion(CTE) method is applied to the(2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution,and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlev′e truncated expansion method.And we investigate interactive properties of solitons and periodic waves.