Cloud computing has emerged as a new style of computing in distributed environment. An efficient and dependable Workflow Scheduling is crucial for achieving high performance and incorporating with enterprise systems. ...Cloud computing has emerged as a new style of computing in distributed environment. An efficient and dependable Workflow Scheduling is crucial for achieving high performance and incorporating with enterprise systems. As an effective security services aggregation methodology, Trust Work-flow Technology (TWT) has been used to construct composite services. However, in cloud environment, the existing closed network services are maintained and functioned by third-party organizations or enterprises. Therefore service-oriented trust strategies must be considered in workflow scheduling. TWFS related algorithms consist of trust policies and strategies to overcome the threats of the application with heuristic workflow scheduling. As a significance of this work, trust based Meta heuristic workflow scheduling (TMWS) is proposed. The TMWS algorithm will improve the efficiency and reliability of the operation in the cloud system and the results show that the TMWS approach is effective and feasible.展开更多
In this work,synchronous cutting of concave and convex surfaces was achieved using the duplex helical method for the hypoid gear,and the problem of tooth surface error correction was studied.First,the mathematical mod...In this work,synchronous cutting of concave and convex surfaces was achieved using the duplex helical method for the hypoid gear,and the problem of tooth surface error correction was studied.First,the mathematical model of the hypoid gears machined by the duplex helical method was established.Second,the coordinates of discrete points on the tooth surface were obtained by measurement center,and the normal errors of the discrete points were calculated.Third,a tooth surface error correction model is established,and the tooth surface error was corrected using the Levenberg-Marquard algorithm with trust region strategy and least square method.Finally,grinding experiments were carried out on the machining parameters obtained by Levenberg-Marquard algorithm with trust region strategy,which had a better effect on tooth surface error correction than the least square method.After the tooth surface error is corrected,the maximum absolute error is reduced from 30.9μm before correction to 6.8μm,the root mean square of the concave error is reduced from 15.1 to 2.1μm,the root mean square of the convex error is reduced from 10.8 to 1.8μm,and the sum of squared errors of the concave and convex surfaces was reduced from 15471 to 358μm^(2).It is verified that the Levenberg-Marquard algorithm with trust region strategy has a good accuracy for the tooth surface error correction of hypoid gear machined by duplex helical method.展开更多
By using Fukushima's differentiable merit function,Taji,Fukushima and Ibaraki have given a globally convergent modified Newton method for the strongly monotone variational inequality problem and proved their metho...By using Fukushima's differentiable merit function,Taji,Fukushima and Ibaraki have given a globally convergent modified Newton method for the strongly monotone variational inequality problem and proved their method to be quadratically convergent under certain assumptions in 1993.In this paper a hybrid method for the variational inequality problem under the assumptions that the mapping F is continuously differentiable and its Jacobian matrix Δ F(x) is positive definite for all x∈S rather than strongly monotone and that the set S is nonempty,polyhedral,closed and convex is proposed.Armijo type line search and trust region strategies as well as Fukushima's differentiable merit function are incorporated into the method.It is then shown that the method is well defined and globally convergent and that,under the same assumptions as those of Taji et al.,the method reduces to the basic Newton method and hence the rate of convergence is quadratic.Computational experiences show the efficiency of the proposed method.展开更多
This paper proposes a two-piece update of projected reduced Hessian algorithmwith nonmonotonic trust region strategy for solving nonlinear equality constrained optimizationproblems. In order to deal with large problem...This paper proposes a two-piece update of projected reduced Hessian algorithmwith nonmonotonic trust region strategy for solving nonlinear equality constrained optimizationproblems. In order to deal with large problems, a two-piece update of two-side projected reducedHessian is used to replace full Hessian matrix. By adopting the Fletcher's penalty function as themerit function, a nonmonotonic trust region strategy is suggested which does not require the meritfunction to reduce its value in every iteration. The two-piece update of projected reduced Hessianalgorithm which switches to nonmonotonic trust region technique possesses global convergence whilemaintaining a two-step Q-superlinear local convergence rate under some reasonable conditions.Furthermore, one step Q-superlinear local convergence rate can be obtained if at least one of theupdate formulas is updated at each iteration by an alternative update rule. The numerical experimentresults are reported to show the effectiveness of the proposed algorithm.展开更多
文摘Cloud computing has emerged as a new style of computing in distributed environment. An efficient and dependable Workflow Scheduling is crucial for achieving high performance and incorporating with enterprise systems. As an effective security services aggregation methodology, Trust Work-flow Technology (TWT) has been used to construct composite services. However, in cloud environment, the existing closed network services are maintained and functioned by third-party organizations or enterprises. Therefore service-oriented trust strategies must be considered in workflow scheduling. TWFS related algorithms consist of trust policies and strategies to overcome the threats of the application with heuristic workflow scheduling. As a significance of this work, trust based Meta heuristic workflow scheduling (TMWS) is proposed. The TMWS algorithm will improve the efficiency and reliability of the operation in the cloud system and the results show that the TMWS approach is effective and feasible.
基金Projects(52075552,51575533,51805555,11662004)supported by the National Natural Science Foundation of China。
文摘In this work,synchronous cutting of concave and convex surfaces was achieved using the duplex helical method for the hypoid gear,and the problem of tooth surface error correction was studied.First,the mathematical model of the hypoid gears machined by the duplex helical method was established.Second,the coordinates of discrete points on the tooth surface were obtained by measurement center,and the normal errors of the discrete points were calculated.Third,a tooth surface error correction model is established,and the tooth surface error was corrected using the Levenberg-Marquard algorithm with trust region strategy and least square method.Finally,grinding experiments were carried out on the machining parameters obtained by Levenberg-Marquard algorithm with trust region strategy,which had a better effect on tooth surface error correction than the least square method.After the tooth surface error is corrected,the maximum absolute error is reduced from 30.9μm before correction to 6.8μm,the root mean square of the concave error is reduced from 15.1 to 2.1μm,the root mean square of the convex error is reduced from 10.8 to 1.8μm,and the sum of squared errors of the concave and convex surfaces was reduced from 15471 to 358μm^(2).It is verified that the Levenberg-Marquard algorithm with trust region strategy has a good accuracy for the tooth surface error correction of hypoid gear machined by duplex helical method.
基金Project supported by the National Natural Science Foundation of China (1 9971 0 65)
文摘By using Fukushima's differentiable merit function,Taji,Fukushima and Ibaraki have given a globally convergent modified Newton method for the strongly monotone variational inequality problem and proved their method to be quadratically convergent under certain assumptions in 1993.In this paper a hybrid method for the variational inequality problem under the assumptions that the mapping F is continuously differentiable and its Jacobian matrix Δ F(x) is positive definite for all x∈S rather than strongly monotone and that the set S is nonempty,polyhedral,closed and convex is proposed.Armijo type line search and trust region strategies as well as Fukushima's differentiable merit function are incorporated into the method.It is then shown that the method is well defined and globally convergent and that,under the same assumptions as those of Taji et al.,the method reduces to the basic Newton method and hence the rate of convergence is quadratic.Computational experiences show the efficiency of the proposed method.
基金The author gratefully acknowledges the partial supports of the National Science Foundation of China Grant (10071050)Science Foundation of Shanghai Technical Sciences Committee Grant (02ZA14070) Science Foundation of Shanghai Education Committee Grant
文摘This paper proposes a two-piece update of projected reduced Hessian algorithmwith nonmonotonic trust region strategy for solving nonlinear equality constrained optimizationproblems. In order to deal with large problems, a two-piece update of two-side projected reducedHessian is used to replace full Hessian matrix. By adopting the Fletcher's penalty function as themerit function, a nonmonotonic trust region strategy is suggested which does not require the meritfunction to reduce its value in every iteration. The two-piece update of projected reduced Hessianalgorithm which switches to nonmonotonic trust region technique possesses global convergence whilemaintaining a two-step Q-superlinear local convergence rate under some reasonable conditions.Furthermore, one step Q-superlinear local convergence rate can be obtained if at least one of theupdate formulas is updated at each iteration by an alternative update rule. The numerical experimentresults are reported to show the effectiveness of the proposed algorithm.