The alteration types of the large-scale Tsagaan Suvarga Cu-Mo porphyry deposit mostly comprise stockwork silicification, argillization, quartz-sericite alteration, K-silicate alteration, and propylitization. The miner...The alteration types of the large-scale Tsagaan Suvarga Cu-Mo porphyry deposit mostly comprise stockwork silicification, argillization, quartz-sericite alteration, K-silicate alteration, and propylitization. The mineralized and altered zones from hydrothermal metallogenic center to the outside successively are Cu-bearing stockwork silicification zone, Cu-beating argillized zone, Cu-Mo-bearing quartz-sericite alteration zone, Cu-Mo-bearing K-silicate alteration zone, and pro- pylitization zone. The K-silicate alteration occurred in the early phase, quartz-sericite alteration in the medium phase, and argillization and carbonatization (calcite) in the later phase. Ore-bearing-altered rocks are significantly controlled by the structure and fissure zones of different scales, and NE- and NW-trending fissure zones could probably be the migration pathways of the porphyry hydrothermal system. Results in this study indicated that the less the concentrations of REE, LREE, and HREE and the more the extensive fractionation between LREE and HREE, the closer it is to the center circulatory hydrothermal ore-forming and the more extensive silicification. The exponential relationship between the fractionation of LREE and HREE and the intensity of silicification and K-silicate alteration was found in the Cu-Mo deposit studied. The negative Eu anomaly, normal Eu, positive Eu anomaly and obviously positive Eu anomaly are coincident with the enhancement of Na2O and K2O concentrations gradually, which indicated that Eu anomaly would be significantly controlled by the alkaline metasomatism of the circulatory hydrothermal ore-forming system. Therefore, such characteristics as the positive Eu anomaly, the obvious fractionation between LREE and HREE and their related special alteration lithofacies are suggested to be metallogenic prognostic and exploration indications for Tsagaan Suvarga-style porphyry Cu-Mo deposits in Mongolia and China.展开更多
Data on the origin and morphology of lake depressions caused by volcanism are scarce in Mongolia.Previous studies focused on climate change patterns based on Terkhiin Tsagaan Lake sediment.We present a result of exist...Data on the origin and morphology of lake depressions caused by volcanism are scarce in Mongolia.Previous studies focused on climate change patterns based on Terkhiin Tsagaan Lake sediment.We present a result of existing reconstructions of lake depression development and changes in the hydrology system during the Khorgo volcanic activation and the Holocene environmental change.A depression of the Terkhiin Tsagaan Lake is formed by a lava flow barrier from the Khorgo volcano.However,the Khorgo volcanic eruption and the lake depression that could shape a large lake have arisen instead from a fault.The morphometric analysis and field measurements indicate that the derivation of the Terkhiin Tsagaan Lake depression and Khorgo volcano may have evolved from movement on a sinistral strike-slip fault,which is about 70 km long.The southern mountains and rivers were displaced from northwest to southeast along the Terkh Fault.The offset along Terkh Fault is 4.02-5.28 km in the depression of the Terkhiin Tsagaan Lake.After movement,a wide valley of the Terkh River developed in the present landscape.The active Khorgo Volcano formed along the Khorgo Fault.The Terkhiin Tsagaan Lake is formed by blocked water from the PaleoTerkh River after lava damming from the Khorgo Volcano.The initial paleo-lake area was about 195.7km^(2),which was three times larger than the modern lake.The current water volume of the Terkhiin Tsagaan Lake is 0.351 km^(3) while the volume of the paleo-lake was 2.248 km^(3).Based on this volume indicator the paleo-lake was 6.4 times larger than the current lake.Overflowing water from the lake depression formed the Suman River by a drying canyon through the lava plateau,but the canyon is along the Terkh Fault.Changes in the water volume of Terkhiin Tsagaan Lake and erosion of Suman River canyon are inversely related to each other.We present the morphometric relationships between the lava plateau of Khorgo Volcano and development of Terkhiin Tsagaan Lake depression.展开更多
基金Project supported by Chinese State Key Project on Fundamental Research Planning (2007CB411304) Open Project of StateKey Laboratory of Deposit Geochemistry of Institute of Geochemistry, Chinese Academy of Sciences
文摘The alteration types of the large-scale Tsagaan Suvarga Cu-Mo porphyry deposit mostly comprise stockwork silicification, argillization, quartz-sericite alteration, K-silicate alteration, and propylitization. The mineralized and altered zones from hydrothermal metallogenic center to the outside successively are Cu-bearing stockwork silicification zone, Cu-beating argillized zone, Cu-Mo-bearing quartz-sericite alteration zone, Cu-Mo-bearing K-silicate alteration zone, and pro- pylitization zone. The K-silicate alteration occurred in the early phase, quartz-sericite alteration in the medium phase, and argillization and carbonatization (calcite) in the later phase. Ore-bearing-altered rocks are significantly controlled by the structure and fissure zones of different scales, and NE- and NW-trending fissure zones could probably be the migration pathways of the porphyry hydrothermal system. Results in this study indicated that the less the concentrations of REE, LREE, and HREE and the more the extensive fractionation between LREE and HREE, the closer it is to the center circulatory hydrothermal ore-forming and the more extensive silicification. The exponential relationship between the fractionation of LREE and HREE and the intensity of silicification and K-silicate alteration was found in the Cu-Mo deposit studied. The negative Eu anomaly, normal Eu, positive Eu anomaly and obviously positive Eu anomaly are coincident with the enhancement of Na2O and K2O concentrations gradually, which indicated that Eu anomaly would be significantly controlled by the alkaline metasomatism of the circulatory hydrothermal ore-forming system. Therefore, such characteristics as the positive Eu anomaly, the obvious fractionation between LREE and HREE and their related special alteration lithofacies are suggested to be metallogenic prognostic and exploration indications for Tsagaan Suvarga-style porphyry Cu-Mo deposits in Mongolia and China.
基金funded by the National University of Mongolia(P2021-4178)funded by the National Natural Science Foundation of China(nos.41961144020,91755213,41967052)+1 种基金additional funding by 111 Project(BP0719022)MOST Special Fund MSFGPMR02-3 from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Wuhan),China。
文摘Data on the origin and morphology of lake depressions caused by volcanism are scarce in Mongolia.Previous studies focused on climate change patterns based on Terkhiin Tsagaan Lake sediment.We present a result of existing reconstructions of lake depression development and changes in the hydrology system during the Khorgo volcanic activation and the Holocene environmental change.A depression of the Terkhiin Tsagaan Lake is formed by a lava flow barrier from the Khorgo volcano.However,the Khorgo volcanic eruption and the lake depression that could shape a large lake have arisen instead from a fault.The morphometric analysis and field measurements indicate that the derivation of the Terkhiin Tsagaan Lake depression and Khorgo volcano may have evolved from movement on a sinistral strike-slip fault,which is about 70 km long.The southern mountains and rivers were displaced from northwest to southeast along the Terkh Fault.The offset along Terkh Fault is 4.02-5.28 km in the depression of the Terkhiin Tsagaan Lake.After movement,a wide valley of the Terkh River developed in the present landscape.The active Khorgo Volcano formed along the Khorgo Fault.The Terkhiin Tsagaan Lake is formed by blocked water from the PaleoTerkh River after lava damming from the Khorgo Volcano.The initial paleo-lake area was about 195.7km^(2),which was three times larger than the modern lake.The current water volume of the Terkhiin Tsagaan Lake is 0.351 km^(3) while the volume of the paleo-lake was 2.248 km^(3).Based on this volume indicator the paleo-lake was 6.4 times larger than the current lake.Overflowing water from the lake depression formed the Suman River by a drying canyon through the lava plateau,but the canyon is along the Terkh Fault.Changes in the water volume of Terkhiin Tsagaan Lake and erosion of Suman River canyon are inversely related to each other.We present the morphometric relationships between the lava plateau of Khorgo Volcano and development of Terkhiin Tsagaan Lake depression.