We study a nonlinear differential equations in the Banach space of real functions and continuous on a bounded and closed interval. With the help of a suitable theorems (fixed point) and some boundary conditions, the 5...We study a nonlinear differential equations in the Banach space of real functions and continuous on a bounded and closed interval. With the help of a suitable theorems (fixed point) and some boundary conditions, the 5th order nonlinear differential equations has at least one positive solution.展开更多
Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1...Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.展开更多
In this paper, using the Brzdek's fixed point theorem [9,Theorem 1] in non-Archimedean(2,β)-Banach spaces, we prove some stability and hyperstability results for an p-th root functional equation ■where p∈{1, …...In this paper, using the Brzdek's fixed point theorem [9,Theorem 1] in non-Archimedean(2,β)-Banach spaces, we prove some stability and hyperstability results for an p-th root functional equation ■where p∈{1, …, 5}, a_1,…, a_k are fixed nonzero reals when p ∈ {1,3,5} and are fixed positive reals when p ∈{2,4}.展开更多
By Fourier analysis techniques and Schauder fixed point theorem, we study the existence of periodic solutions for a class of even order differential equations with multiple delays. The result obtained is a generalizat...By Fourier analysis techniques and Schauder fixed point theorem, we study the existence of periodic solutions for a class of even order differential equations with multiple delays. The result obtained is a generalization of the results developed by W. Layton to the case of multiple delays.展开更多
Approximate analytical solutions of the Dirac equation for Tietz-Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin-orbit quantum number K are obtained within the Pekeris approxim...Approximate analytical solutions of the Dirac equation for Tietz-Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin-orbit quantum number K are obtained within the Pekeris approximation scheme to deal with the spin-orbit coupling terms K(K± 1)r^-2. Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov-Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated.展开更多
In this paper,we study the existence of quasi-periodic solutions and the bound- edness of solutions for a wide class nonlinear differential equations of second order.Using the KAM theorem of reversible systems and the...In this paper,we study the existence of quasi-periodic solutions and the bound- edness of solutions for a wide class nonlinear differential equations of second order.Using the KAM theorem of reversible systems and the theory of transformations,we obtain the existence of quasi-periodic solutions and the boundedness of solutions under some reasonable conditions.展开更多
A new stabilized method is established for the Stokes equations with a zero- th term and convection. It is shown that this new methodology is stable and has an optimal error estimates for all mesh-Peclet number, allow...A new stabilized method is established for the Stokes equations with a zero- th term and convection. It is shown that this new methodology is stable and has an optimal error estimates for all mesh-Peclet number, allowing any combination of velocity and pressure interpolation, including the discontinuous case.展开更多
In this paper,we obtain suffcient conditions for the stability in p-th moment of the analytical solutions and the mean square stability of a stochastic differential equation with unbounded delay proposed in [6,10] usi...In this paper,we obtain suffcient conditions for the stability in p-th moment of the analytical solutions and the mean square stability of a stochastic differential equation with unbounded delay proposed in [6,10] using the explicit Euler method.展开更多
We consider the generalized integrable fifth order nonlinear Korteweg-de Vries (fKdV) equation. The extended Tanh method has been used rigorously, by com- putational program MAPLE, for solving this fifth order nonli...We consider the generalized integrable fifth order nonlinear Korteweg-de Vries (fKdV) equation. The extended Tanh method has been used rigorously, by com- putational program MAPLE, for solving this fifth order nonlinear partial differential equation. The general solutions of the fKdV equation are formed considering an ansatz of the solution in terms of tanh. Then, in particular, some exact solutions are found for the two fifth order KdV-type equations given by the Caudrey-Dodd-Gibbon equation and the another fifth order equation. The obtained solutions include solitary wave solution for both the two equations.展开更多
This paper describes the spectral method for numerically solving Zakharov equation with periodicboundary conditions. This method is spectral method for spatial variable and difference method fortime variable. We make ...This paper describes the spectral method for numerically solving Zakharov equation with periodicboundary conditions. This method is spectral method for spatial variable and difference method fortime variable. We make error estimation of approximate solution and prove the convergence of spectralmethod. We had given the convergence rate. Also, we prove the stability of approximate method forinitial values.展开更多
A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be appl...A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be applied to one with other periodic impulse coefficients.展开更多
In this study,we discuss the central force problem by using the nonlocal-in-time kinetic energy approach.At low length scales,the system is dominated by the generalized 4^(th)-order extended Fisher-Kolmogorov stationa...In this study,we discuss the central force problem by using the nonlocal-in-time kinetic energy approach.At low length scales,the system is dominated by the generalized 4^(th)-order extended Fisher-Kolmogorov stationary equation and by the 4^(th)-order stationary Swift-Hohenberg differential equation under explicit conditions.The energy is a conserved quantity along orbits of the extended Fisher-Kolmogorov stationary equation.The system is quantized,the system is stable,and the ground energy problem is solved.展开更多
In this paper, the concept of generalized ω-periodic solution is given for Riccati's equationy'=a(t)y^2+b(t)y+c(t)with perriodic coefficients, the relation between generalized ω-periodicsolutions and the cha...In this paper, the concept of generalized ω-periodic solution is given for Riccati's equationy'=a(t)y^2+b(t)y+c(t)with perriodic coefficients, the relation between generalized ω-periodicsolutions and the characteristic numbers of system x'_1=c(t)x_2, x'_2=-a(t)x_1-b(t)x_2 is indicated, andseveral necessary and sufficient conditions are given using the coefficients. Moreover, in the case of a(t)without zero, the relation between the number of continuous ω-periodic solutions of y'=a(t)y^2+b(t)y+c(t)+δand the parameter δ is given; thus the problem on the existence of continuous ω-periodic.solutions is basically solved.展开更多
文摘We study a nonlinear differential equations in the Banach space of real functions and continuous on a bounded and closed interval. With the help of a suitable theorems (fixed point) and some boundary conditions, the 5th order nonlinear differential equations has at least one positive solution.
文摘Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.
文摘In this paper, using the Brzdek's fixed point theorem [9,Theorem 1] in non-Archimedean(2,β)-Banach spaces, we prove some stability and hyperstability results for an p-th root functional equation ■where p∈{1, …, 5}, a_1,…, a_k are fixed nonzero reals when p ∈ {1,3,5} and are fixed positive reals when p ∈{2,4}.
基金The second author partially supported by NSFC (10571179, 10871203) GrantProgramfor New Century Excellent Talents in University of Ministry of Eduction of China
文摘By Fourier analysis techniques and Schauder fixed point theorem, we study the existence of periodic solutions for a class of even order differential equations with multiple delays. The result obtained is a generalization of the results developed by W. Layton to the case of multiple delays.
基金supported by the Scientific and Technological Research Council of Turkey (TUBITAK)
文摘Approximate analytical solutions of the Dirac equation for Tietz-Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin-orbit quantum number K are obtained within the Pekeris approximation scheme to deal with the spin-orbit coupling terms K(K± 1)r^-2. Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov-Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated.
文摘In this paper,we study the existence of quasi-periodic solutions and the bound- edness of solutions for a wide class nonlinear differential equations of second order.Using the KAM theorem of reversible systems and the theory of transformations,we obtain the existence of quasi-periodic solutions and the boundedness of solutions under some reasonable conditions.
基金This research is supported by the National Natural Science Foundation of China.
文摘A new stabilized method is established for the Stokes equations with a zero- th term and convection. It is shown that this new methodology is stable and has an optimal error estimates for all mesh-Peclet number, allowing any combination of velocity and pressure interpolation, including the discontinuous case.
基金Supported by the Special Foundation for Young Talent of Fujian Province (2008F306010002)
文摘In this paper,we obtain suffcient conditions for the stability in p-th moment of the analytical solutions and the mean square stability of a stochastic differential equation with unbounded delay proposed in [6,10] using the explicit Euler method.
文摘We consider the generalized integrable fifth order nonlinear Korteweg-de Vries (fKdV) equation. The extended Tanh method has been used rigorously, by com- putational program MAPLE, for solving this fifth order nonlinear partial differential equation. The general solutions of the fKdV equation are formed considering an ansatz of the solution in terms of tanh. Then, in particular, some exact solutions are found for the two fifth order KdV-type equations given by the Caudrey-Dodd-Gibbon equation and the another fifth order equation. The obtained solutions include solitary wave solution for both the two equations.
基金Project supported by the Science Foundation of the Chinese Academy of Sciences
文摘This paper describes the spectral method for numerically solving Zakharov equation with periodicboundary conditions. This method is spectral method for spatial variable and difference method fortime variable. We make error estimation of approximate solution and prove the convergence of spectralmethod. We had given the convergence rate. Also, we prove the stability of approximate method forinitial values.
基金This work is supported by the National Science Fund of Peop1e's Republic of China
文摘A thorough investigation of the systemd^2y(x):dx^2+p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤x<x_0(2π>0> -η, x_0≤x<2π(η>p(x)=p(x+2π),-∞<x<∞is given, and the method can be applied to one with other periodic impulse coefficients.
文摘In this study,we discuss the central force problem by using the nonlocal-in-time kinetic energy approach.At low length scales,the system is dominated by the generalized 4^(th)-order extended Fisher-Kolmogorov stationary equation and by the 4^(th)-order stationary Swift-Hohenberg differential equation under explicit conditions.The energy is a conserved quantity along orbits of the extended Fisher-Kolmogorov stationary equation.The system is quantized,the system is stable,and the ground energy problem is solved.
文摘In this paper, the concept of generalized ω-periodic solution is given for Riccati's equationy'=a(t)y^2+b(t)y+c(t)with perriodic coefficients, the relation between generalized ω-periodicsolutions and the characteristic numbers of system x'_1=c(t)x_2, x'_2=-a(t)x_1-b(t)x_2 is indicated, andseveral necessary and sufficient conditions are given using the coefficients. Moreover, in the case of a(t)without zero, the relation between the number of continuous ω-periodic solutions of y'=a(t)y^2+b(t)y+c(t)+δand the parameter δ is given; thus the problem on the existence of continuous ω-periodic.solutions is basically solved.