This paper proposed a T- Y tube model to simulate foe input impedance of arterial system. It improves and extends the asymmetric T-tube model which was firstproposed by O' Rourke[1] and developed laier by Liu et a...This paper proposed a T- Y tube model to simulate foe input impedance of arterial system. It improves and extends the asymmetric T-tube model which was firstproposed by O' Rourke[1] and developed laier by Liu et al.[2]. Based on foe asymmetricT-tube model. a T-Y tube model was proposed by adding branching tubes whichrepresem the iliac arteries.All the tubes are considered to be uniform,viscoelasticlongitudinally tethered cylindrical tubes.The upper tube terminates with a windkesselmodel, while the terminal arterioles of the lowr tube are expressed as a resistance.After proper eraluation of the parameters.the impedance of the arterial system iscalculated under normal physiological and hypertensive condition.The model canpredict impedance in good agreement with the experimentally obtained data no matterin normal physiological condition or in pathological condition In comparison with theasymmeric T-tube model,T- Y tube model is closer to anatomy structure of the human arlerial system and at the sametime much simpler than the extremely complex multiplebranching tube model Therefore it will be a valuable model in studying the influencesof various parameters on aorta impedance and ventricular-vascular coupling.展开更多
The present paper contributes to the modeling of unsteady flow analysis of vertical axis wind turbine (VAWT). Double multiple streamtube (DSMT) model was applied for the performance prediction of straight bladed fixed...The present paper contributes to the modeling of unsteady flow analysis of vertical axis wind turbine (VAWT). Double multiple streamtube (DSMT) model was applied for the performance prediction of straight bladed fixed pitch VAWT using NACA0018 airfoil at low wind speed. A moving mesh technique was used to investigate two-dimensional unsteady flow around the same VAWT model with NACA0018 airfoil modified to be flexible at 150 from the main blade axis of the turbine at the trailing edge located about 70 % of the blade chord length using fluent solving Reynolds average Navier-strokes equation. The results obtained from DMST model and the simulation results were then compared. The result shows that the CFD simulation with airfoil modified has shown better performance at low tip speed ratios for the modeled turbine.展开更多
In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to i...In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to investigate how the lengths and distributions of solute travel time through STM affect the breakthrough curves at the end mixing surface. The conceptual modeling revealed that 1) the shape of breakthrough curve (BTC) at the mixing surface was determined by not only input travel time distributions but also solute injection mode such as sampling time and pulse lengths;2) the increase of pulse length resulted in the linear increase of the first time moment (mean travel time) and quadratic increase of the second time moment (variance of travel time) leading to more spreading of solute, however, the second time moment was not affected by travel time distributions and 3) for a given input distributions the increase in travel distance resulted in more dispersion with the quadratic increase of travel time variance. This indicates that stream tube model obeying strictly pure convective flow follows the concept of convective-lognormal transport (CLT) model regardless the input travel time distributions.展开更多
The performance and annual energy output have to be predicted to maximize the economic benefits from a wind turbine. Mathematically predicting the performance of Darrieus type lift based turbines are challenging due t...The performance and annual energy output have to be predicted to maximize the economic benefits from a wind turbine. Mathematically predicting the performance of Darrieus type lift based turbines are challenging due to the inconsistent angle of attack, blade wake interaction and local induced velocities giving rise to complex flow physics. A reliable and validated mathematical model is therefore essential to optimize the various design parameters prior to manufacture. The objective of the current study is to evaluate widely employed aerodynamic models based on their prediction accuracy, limitations, and computational requirements. Double multiple stream tube models have been discussed in detail and the predictions are experimentally validated through the wind tunnel test of three-bladed H-Darrieus rotor in terms of torque and power coefficient. The possible sources for the deviation between the predicted and measured values have been discussed and concluded with potential solutions.展开更多
A classic mass loaded flux tube model and the diquark picture are employed to explore both mesons and baryons. The spectrum of Λc+ baryons and Ds mesons is systematically obtained. The spin-orbit interaction in Ds w...A classic mass loaded flux tube model and the diquark picture are employed to explore both mesons and baryons. The spectrum of Λc+ baryons and Ds mesons is systematically obtained. The spin-orbit interaction in Ds was simplified as an L·S coupling. The spin-orbit interaction in Λc was simplified as a Jl ·Jc coupling. The predicted masses are consistent with the latest experiments.展开更多
The light scalar mesons below 1GeV configured as tetraquark systems are studied in the framework of the flux-tube model. Comparative studies indicate that a multi-body confinement,instead of the additive two-body conf...The light scalar mesons below 1GeV configured as tetraquark systems are studied in the framework of the flux-tube model. Comparative studies indicate that a multi-body confinement,instead of the additive two-body confinement, should be used in a multiquark system.The σ and κ mesons could be well accommodated in the diquark-antidiquark tetraquark picture, and could be colour-confinement resonances. The a0(980) and fo(980) mesons are not described as KK molecular states and ns diquark-antidiquark states.However, the mass of the first radial excited state of the diquark-antidiquark state, nn is 1019 MeV,is close to the experimental data of the fo (980).展开更多
Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability to stand explosion, immunity to electromagnetic interference and high accuracy, esp...Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability to stand explosion, immunity to electromagnetic interference and high accuracy, especially fit for measureroent applications in harsh environment. In this study, a novel FBG (fiber Bragg grating) strain sensor, which is packaged in a 1.2 mm stainless steel tube with epoxy resin, is developed. Experiments are conducted on the universal material testing machine to calibrate its strain transferring characteristics. The sensor has the advantages of small size, high precision and flexible use, and exhibits promising potentials. Five tube-packaged strain FBG sensors have been applied to the vibration experiment of a submarine pipeline model. The strain measttred with the FBG sensor agrees well with that measttred with the electric resistance strain sensor.展开更多
An integrated mathematical model to simulate seamless tube rolling processes has been developed at The Timken Company. The model is capable of simulating the thermal, deformation and microstructure evolution in the pi...An integrated mathematical model to simulate seamless tube rolling processes has been developed at The Timken Company. The model is capable of simulating the thermal, deformation and microstructure evolution in the piercing, elongating and reducing/sizing and the austenite decomposition in the mill annealing and cooling operations. Finite difference schemes are employed to model cooling, reducing/sizing and stretch reducing, and finite-element schemes are employed to simulate piercing and elongating. The model predicts the thermal history, deformation, rolling load, torque, recrystallization and grain growth in hot tube rolling, austenite decomposition in cooling or annealing, and the final structure-properties. In this paper mathematical models which are employed to describe the thermal, deformation and microstructure evolution along with the modeling results are presented. The developed 'tube rolling mill in the computer' provides a powerful tool for engineers for product and process development, process control, process optimization and quality control.展开更多
Purpose: To evaluate the quality of three-dimensional (3D) CT angiography images of the abdominal viscera with small focal spot, low tube voltage, and iterative model reconstruction technique (IMR). Materials and Meth...Purpose: To evaluate the quality of three-dimensional (3D) CT angiography images of the abdominal viscera with small focal spot, low tube voltage, and iterative model reconstruction technique (IMR). Materials and Methods: Seven patients with suspected disease of the pancreatobiliary system had undergone CT with high-quality CTA protocol in the present study. There were 5 men and 2 women, ranging in age from 52 to 80 years (mean: 64 years). Results: Depiction of abdominal small artery, small portal vein was possible in all cases. In two cases that we were able to compare, it was superior to standard CTA in small vascular depiction in CTA made clearly in high quality protocol. Conclusions: Although the use of small focal spot, low tube voltage, and IMR can produce higher-quality images of abdominal vessels than standard CTA, this improvement is not significant at elevated radiation doses.展开更多
Firstly, sample square-circular transition tube along straight central route was modeled on CATIA software. The parameters are as follows: let the tube length is L, and the constant cross section area is S, and S = ...Firstly, sample square-circular transition tube along straight central route was modeled on CATIA software. The parameters are as follows: let the tube length is L, and the constant cross section area is S, and S = πR^2 = a2, in which R stands for the circle radius on one end, and a the square side length on the other end; set up the coordinate system with OX axis on the central route in which the origin O is on centroid of the square end and assume the cross section size at x as the square shaped with all four comers filleted in radius r which is proportional to x, that is, the linear slope of r is R/L, thus, both values r and square side length ax can be attained on the constant cross section area assumption. Secondly, some sample polygonal-circular transition tubes along straight, circular and helical central route were implemented similarly. Thirdly, numerical analysis of stress and displacement of these tubes were carried out on MSC/PATRAN software which are important to the distribution of turbulent flow and the layout of these transitional tube structures.展开更多
The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. A...The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. Appropriate first-order model equations were developed applying principles of energy balance. The differential equations developed for the process streams which exchanged heat was evaluated numerically to predict the temperature variations as a function of time. The relevant parameters associated with typical heat exchanger works were calculated using plant data of 10-E-02. The model strives to predict the final kerosene temperature from 488 to 353.6 K. While the crude oil streams temperature rose from 313 to 353.6 K. The developed model enables the operator to predict the final temperature at the kerosene hydro-treating unit and thereby prevent regular emergency shutdowns due to excessive temperature rise.展开更多
随着新能源大规模接入电网,为应对新能源随机性和波动性给互联系统负荷频率控制(Load Frequency Control,LFC)带来的不确定问题,实现新能源电力系统多约束条件下的优化运行,建立了含风电机组的LFC多胞模型,以减少模型参数不确定对控制...随着新能源大规模接入电网,为应对新能源随机性和波动性给互联系统负荷频率控制(Load Frequency Control,LFC)带来的不确定问题,实现新能源电力系统多约束条件下的优化运行,建立了含风电机组的LFC多胞模型,以减少模型参数不确定对控制系统的影响。设计了基于原对偶神经网络(Primal-Dual Neural Network,PDNN)的Tube鲁棒模型预测控制(Tube-Robust Model Predictive Control,Tube-RMPC)策略。将标称模型预测控制器与辅助反馈控制器结合,通过PDNN实时求解标称模型预测控制器以保证为LFC系统产生最优状态轨迹。设计辅助反馈控制器抵消外部干扰,使实际系统的状态维持在以标称轨迹为中心的Tube内。最后,对含风电的三区域负荷频率控制系统进行仿真研究,结果表明所提出的Tube-RMPC控制策略,不仅能够有效提高控制精度,还能增强系统鲁棒性,提高实时优化效率。展开更多
In this paper the soft medium tube expanding process of different loading case and tube sheet structure is simulated with FEM. The expanding patterns under different conditions are obtained. The correction of the Sing...In this paper the soft medium tube expanding process of different loading case and tube sheet structure is simulated with FEM. The expanding patterns under different conditions are obtained. The correction of the Single-tube Model is verified, and cor- responding procedures are also proposed to correct the error.展开更多
文摘This paper proposed a T- Y tube model to simulate foe input impedance of arterial system. It improves and extends the asymmetric T-tube model which was firstproposed by O' Rourke[1] and developed laier by Liu et al.[2]. Based on foe asymmetricT-tube model. a T-Y tube model was proposed by adding branching tubes whichrepresem the iliac arteries.All the tubes are considered to be uniform,viscoelasticlongitudinally tethered cylindrical tubes.The upper tube terminates with a windkesselmodel, while the terminal arterioles of the lowr tube are expressed as a resistance.After proper eraluation of the parameters.the impedance of the arterial system iscalculated under normal physiological and hypertensive condition.The model canpredict impedance in good agreement with the experimentally obtained data no matterin normal physiological condition or in pathological condition In comparison with theasymmeric T-tube model,T- Y tube model is closer to anatomy structure of the human arlerial system and at the sametime much simpler than the extremely complex multiplebranching tube model Therefore it will be a valuable model in studying the influencesof various parameters on aorta impedance and ventricular-vascular coupling.
文摘The present paper contributes to the modeling of unsteady flow analysis of vertical axis wind turbine (VAWT). Double multiple streamtube (DSMT) model was applied for the performance prediction of straight bladed fixed pitch VAWT using NACA0018 airfoil at low wind speed. A moving mesh technique was used to investigate two-dimensional unsteady flow around the same VAWT model with NACA0018 airfoil modified to be flexible at 150 from the main blade axis of the turbine at the trailing edge located about 70 % of the blade chord length using fluent solving Reynolds average Navier-strokes equation. The results obtained from DMST model and the simulation results were then compared. The result shows that the CFD simulation with airfoil modified has shown better performance at low tip speed ratios for the modeled turbine.
文摘In this study, we performed a conceptual modeling on solute transport based on theoretical stream tube model (STM) with various travel time distributions assuming a pure convective flow through each tube in order to investigate how the lengths and distributions of solute travel time through STM affect the breakthrough curves at the end mixing surface. The conceptual modeling revealed that 1) the shape of breakthrough curve (BTC) at the mixing surface was determined by not only input travel time distributions but also solute injection mode such as sampling time and pulse lengths;2) the increase of pulse length resulted in the linear increase of the first time moment (mean travel time) and quadratic increase of the second time moment (variance of travel time) leading to more spreading of solute, however, the second time moment was not affected by travel time distributions and 3) for a given input distributions the increase in travel distance resulted in more dispersion with the quadratic increase of travel time variance. This indicates that stream tube model obeying strictly pure convective flow follows the concept of convective-lognormal transport (CLT) model regardless the input travel time distributions.
文摘The performance and annual energy output have to be predicted to maximize the economic benefits from a wind turbine. Mathematically predicting the performance of Darrieus type lift based turbines are challenging due to the inconsistent angle of attack, blade wake interaction and local induced velocities giving rise to complex flow physics. A reliable and validated mathematical model is therefore essential to optimize the various design parameters prior to manufacture. The objective of the current study is to evaluate widely employed aerodynamic models based on their prediction accuracy, limitations, and computational requirements. Double multiple stream tube models have been discussed in detail and the predictions are experimentally validated through the wind tunnel test of three-bladed H-Darrieus rotor in terms of torque and power coefficient. The possible sources for the deviation between the predicted and measured values have been discussed and concluded with potential solutions.
基金Supported by National Natural Science Foundation of China(10775093)
文摘A classic mass loaded flux tube model and the diquark picture are employed to explore both mesons and baryons. The spectrum of Λc+ baryons and Ds mesons is systematically obtained. The spin-orbit interaction in Ds was simplified as an L·S coupling. The spin-orbit interaction in Λc was simplified as a Jl ·Jc coupling. The predicted masses are consistent with the latest experiments.
基金Supported by National Natural Science Foundation of China(11047140,11175088,11035006)Ph.D Program Funds of Chongqing Jiaotong University
文摘The light scalar mesons below 1GeV configured as tetraquark systems are studied in the framework of the flux-tube model. Comparative studies indicate that a multi-body confinement,instead of the additive two-body confinement, should be used in a multiquark system.The σ and κ mesons could be well accommodated in the diquark-antidiquark tetraquark picture, and could be colour-confinement resonances. The a0(980) and fo(980) mesons are not described as KK molecular states and ns diquark-antidiquark states.However, the mass of the first radial excited state of the diquark-antidiquark state, nn is 1019 MeV,is close to the experimental data of the fo (980).
基金This research was financially supported by the National Natural Science Foundation of China ( Nos . 50408031 ,50378012 and 50439010) the Natural Science Foundation of Liaoning Province (Nos .20032210 and 20042149)the Young Teacher’s Foundationfrom Dalian University of Technology.
文摘Optical fiber sensors have received increasing attention in the fields of aeronautic and civil engineering for their superior ability to stand explosion, immunity to electromagnetic interference and high accuracy, especially fit for measureroent applications in harsh environment. In this study, a novel FBG (fiber Bragg grating) strain sensor, which is packaged in a 1.2 mm stainless steel tube with epoxy resin, is developed. Experiments are conducted on the universal material testing machine to calibrate its strain transferring characteristics. The sensor has the advantages of small size, high precision and flexible use, and exhibits promising potentials. Five tube-packaged strain FBG sensors have been applied to the vibration experiment of a submarine pipeline model. The strain measttred with the FBG sensor agrees well with that measttred with the electric resistance strain sensor.
文摘An integrated mathematical model to simulate seamless tube rolling processes has been developed at The Timken Company. The model is capable of simulating the thermal, deformation and microstructure evolution in the piercing, elongating and reducing/sizing and the austenite decomposition in the mill annealing and cooling operations. Finite difference schemes are employed to model cooling, reducing/sizing and stretch reducing, and finite-element schemes are employed to simulate piercing and elongating. The model predicts the thermal history, deformation, rolling load, torque, recrystallization and grain growth in hot tube rolling, austenite decomposition in cooling or annealing, and the final structure-properties. In this paper mathematical models which are employed to describe the thermal, deformation and microstructure evolution along with the modeling results are presented. The developed 'tube rolling mill in the computer' provides a powerful tool for engineers for product and process development, process control, process optimization and quality control.
文摘Purpose: To evaluate the quality of three-dimensional (3D) CT angiography images of the abdominal viscera with small focal spot, low tube voltage, and iterative model reconstruction technique (IMR). Materials and Methods: Seven patients with suspected disease of the pancreatobiliary system had undergone CT with high-quality CTA protocol in the present study. There were 5 men and 2 women, ranging in age from 52 to 80 years (mean: 64 years). Results: Depiction of abdominal small artery, small portal vein was possible in all cases. In two cases that we were able to compare, it was superior to standard CTA in small vascular depiction in CTA made clearly in high quality protocol. Conclusions: Although the use of small focal spot, low tube voltage, and IMR can produce higher-quality images of abdominal vessels than standard CTA, this improvement is not significant at elevated radiation doses.
文摘Firstly, sample square-circular transition tube along straight central route was modeled on CATIA software. The parameters are as follows: let the tube length is L, and the constant cross section area is S, and S = πR^2 = a2, in which R stands for the circle radius on one end, and a the square side length on the other end; set up the coordinate system with OX axis on the central route in which the origin O is on centroid of the square end and assume the cross section size at x as the square shaped with all four comers filleted in radius r which is proportional to x, that is, the linear slope of r is R/L, thus, both values r and square side length ax can be attained on the constant cross section area assumption. Secondly, some sample polygonal-circular transition tubes along straight, circular and helical central route were implemented similarly. Thirdly, numerical analysis of stress and displacement of these tubes were carried out on MSC/PATRAN software which are important to the distribution of turbulent flow and the layout of these transitional tube structures.
文摘The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. Appropriate first-order model equations were developed applying principles of energy balance. The differential equations developed for the process streams which exchanged heat was evaluated numerically to predict the temperature variations as a function of time. The relevant parameters associated with typical heat exchanger works were calculated using plant data of 10-E-02. The model strives to predict the final kerosene temperature from 488 to 353.6 K. While the crude oil streams temperature rose from 313 to 353.6 K. The developed model enables the operator to predict the final temperature at the kerosene hydro-treating unit and thereby prevent regular emergency shutdowns due to excessive temperature rise.
文摘随着新能源大规模接入电网,为应对新能源随机性和波动性给互联系统负荷频率控制(Load Frequency Control,LFC)带来的不确定问题,实现新能源电力系统多约束条件下的优化运行,建立了含风电机组的LFC多胞模型,以减少模型参数不确定对控制系统的影响。设计了基于原对偶神经网络(Primal-Dual Neural Network,PDNN)的Tube鲁棒模型预测控制(Tube-Robust Model Predictive Control,Tube-RMPC)策略。将标称模型预测控制器与辅助反馈控制器结合,通过PDNN实时求解标称模型预测控制器以保证为LFC系统产生最优状态轨迹。设计辅助反馈控制器抵消外部干扰,使实际系统的状态维持在以标称轨迹为中心的Tube内。最后,对含风电的三区域负荷频率控制系统进行仿真研究,结果表明所提出的Tube-RMPC控制策略,不仅能够有效提高控制精度,还能增强系统鲁棒性,提高实时优化效率。
文摘In this paper the soft medium tube expanding process of different loading case and tube sheet structure is simulated with FEM. The expanding patterns under different conditions are obtained. The correction of the Single-tube Model is verified, and cor- responding procedures are also proposed to correct the error.