BACKGROUND:Previous tissue-engineered nerve studies have focused on artificial nerve and nerve cell cultures.The effects of regeneration chambers with autologous nerve bridging for the repair of nerve defects remain ...BACKGROUND:Previous tissue-engineered nerve studies have focused on artificial nerve and nerve cell cultures.The effects of regeneration chambers with autologous nerve bridging for the repair of nerve defects remain unclear.OBJECTIVE:To explore the feasibility and advantages of chitosan tube bridging autologous nerve segments for repairing 12-mm sciatic nerve defects in rats.DESIGN,TIME AND SETTING:A randomized,controlled,animal study using nerve tissue engineering was performed at the Animal Laboratory and Laboratory of Histology and Embryology,Liaoning Medical University from June 2008 to March 2009.MATERIALS:Chitosan powder was purchased from Jinan Haidebei Marine Bioengineering,China.METHODS:A sciatic nerve segment of approximately 8 mm was excised from the posterior margin of the piriformis muscle of Sprague Dawley rats.The two nerve ends shrank to form a 12-mm defect,and the nerve defect was repaired using a chitosan tube bridging autologous nerve segment (bridge group),a chitosan tube-encapsulated autologous nerve segment (encapsulation group),and a chitosan tube alone (chitosan tube alone group),respectively.MAIN OUTCOME MEASURES:Histological and ultrastructural changes of the injured sciatic nerve;number of regenerated myelinated nerve fibers; nerve conduction velocity; leg muscle atrophy; and sciatic nerve functional index.RESULTS:At 4 months after implantation,the chitosan tube was absorbed.The tube was thin,but maintained the original shape,and vascular proliferation was observed around the tube.In the bridge group,regenerative myelinated nerve fibers were thick and orderly,with a thick myelin sheath and intact axonal structure.The number of myelinated nerve fibers and nerve conduction velocity were significantly greater compared with the other groups (P〈 0.01).Moreover,nerve and muscle function was significantly improved following chitosan tube bridging autologous nerve segment treatment compared with the other groups (P〈 0.05 or P 〈 0.01).CONCLUSION:Chitosan tube bridging autologous nerve segments exhibited better repair effects on nerve defects compared with chitosan tubeencapsulated autologous nerve segments and a chitosan tube alone.This method provided a simple and effective treatment for long-segmental nerve defects.展开更多
Monodispersed microsized copper oxalate particles were prepared in a segmented continuous flow tube reactor, and the effect of the main parameters such as organic additive agent, initial copper ions concentration, res...Monodispersed microsized copper oxalate particles were prepared in a segmented continuous flow tube reactor, and the effect of the main parameters such as organic additive agent, initial copper ions concentration, residence time, and segmented media on the final products were investigated experimentally. The obtained copper oxalate microsized particles were disc-like in the presence of citrate ligand,which was the shape inducer for the precipitated copper oxalate. Thermodynamic equilibrium diagrams of the Cu(Ⅱ)-oxalate-H_2O,Cu(Ⅱ)-oxalate-citrate-H_2O, and Cu(Ⅱ)-oxalate-EDTA-H_2O solution systems were drawn to estimate the possible copper species under the experimental conditions and to explain the formation mechanisms of copper oxalate particles in the segmented fluidic reactor. Both theoretical and experimental results indicated that the presence of chelating reagents such as citrate and EDTA had distinct effect on the evolution of particle shape. Air and kerosene were tested as media for the fluidic flow segmentation, and the latter was verified to better promote the growth of copper oxalate particles. The present study provides an easy method to prepare monodispersed copper oxalate microsized particles in a continuous scaling-up way, which can be utilized to prepare the precursor material for conductive inks.展开更多
文摘BACKGROUND:Previous tissue-engineered nerve studies have focused on artificial nerve and nerve cell cultures.The effects of regeneration chambers with autologous nerve bridging for the repair of nerve defects remain unclear.OBJECTIVE:To explore the feasibility and advantages of chitosan tube bridging autologous nerve segments for repairing 12-mm sciatic nerve defects in rats.DESIGN,TIME AND SETTING:A randomized,controlled,animal study using nerve tissue engineering was performed at the Animal Laboratory and Laboratory of Histology and Embryology,Liaoning Medical University from June 2008 to March 2009.MATERIALS:Chitosan powder was purchased from Jinan Haidebei Marine Bioengineering,China.METHODS:A sciatic nerve segment of approximately 8 mm was excised from the posterior margin of the piriformis muscle of Sprague Dawley rats.The two nerve ends shrank to form a 12-mm defect,and the nerve defect was repaired using a chitosan tube bridging autologous nerve segment (bridge group),a chitosan tube-encapsulated autologous nerve segment (encapsulation group),and a chitosan tube alone (chitosan tube alone group),respectively.MAIN OUTCOME MEASURES:Histological and ultrastructural changes of the injured sciatic nerve;number of regenerated myelinated nerve fibers; nerve conduction velocity; leg muscle atrophy; and sciatic nerve functional index.RESULTS:At 4 months after implantation,the chitosan tube was absorbed.The tube was thin,but maintained the original shape,and vascular proliferation was observed around the tube.In the bridge group,regenerative myelinated nerve fibers were thick and orderly,with a thick myelin sheath and intact axonal structure.The number of myelinated nerve fibers and nerve conduction velocity were significantly greater compared with the other groups (P〈 0.01).Moreover,nerve and muscle function was significantly improved following chitosan tube bridging autologous nerve segment treatment compared with the other groups (P〈 0.05 or P 〈 0.01).CONCLUSION:Chitosan tube bridging autologous nerve segments exhibited better repair effects on nerve defects compared with chitosan tubeencapsulated autologous nerve segments and a chitosan tube alone.This method provided a simple and effective treatment for long-segmental nerve defects.
文摘Monodispersed microsized copper oxalate particles were prepared in a segmented continuous flow tube reactor, and the effect of the main parameters such as organic additive agent, initial copper ions concentration, residence time, and segmented media on the final products were investigated experimentally. The obtained copper oxalate microsized particles were disc-like in the presence of citrate ligand,which was the shape inducer for the precipitated copper oxalate. Thermodynamic equilibrium diagrams of the Cu(Ⅱ)-oxalate-H_2O,Cu(Ⅱ)-oxalate-citrate-H_2O, and Cu(Ⅱ)-oxalate-EDTA-H_2O solution systems were drawn to estimate the possible copper species under the experimental conditions and to explain the formation mechanisms of copper oxalate particles in the segmented fluidic reactor. Both theoretical and experimental results indicated that the presence of chelating reagents such as citrate and EDTA had distinct effect on the evolution of particle shape. Air and kerosene were tested as media for the fluidic flow segmentation, and the latter was verified to better promote the growth of copper oxalate particles. The present study provides an easy method to prepare monodispersed copper oxalate microsized particles in a continuous scaling-up way, which can be utilized to prepare the precursor material for conductive inks.