Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft su...Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft suction box and a siphon-type discharge passage with a vacuum breaker as the cutoff device was developed , which possesses such advantages as simple structure , reliable cutoff , and high energy performance.Taking some pumping stations as the case studies , in the light of the specified operation conditions , the hydraulic optimal design of the shaft-type tubular pumping system was determined and the optimized shape of the system was recommended.The performance prediction based on the computational fluid dynamics methodology was determined and the model test verification was conducted.The results show that the predicted data agree with the experimental head and efficiency so that both methods can be used to determine the performance of a real pumping station.Finally , the in-situ measurements of a pumping station during the commissioning period further verified that the shaft-type tubular pumping station with a siphon discharge passage is of higher efficiency , more reliable and stable.展开更多
Impeller hub corner separation flow(IHCS)has a significant influence on energy conversion of the bulb tubular pump,and its unsteady characteristics are investigated with CFD-based method.The generation mechanism and p...Impeller hub corner separation flow(IHCS)has a significant influence on energy conversion of the bulb tubular pump,and its unsteady characteristics are investigated with CFD-based method.The generation mechanism and power loss characteristics of IHCS are investigated by the entropy production method and pressure fluctuation analysis.The main cause can be attributed to the large transverse pressure gradient near the hub at the trailing edge of the impeller,which is aggravated by the circumferential movement trend and the diffuser reverse flow,while the IHCS is significantly weakened with increased flow rate.The undesirable flow behavior is more likely to cause a significant increase in energy loss near the hub region compared to that in the rim region.The relative vortex stretching induced by the velocity gradient is the main cause of the horn-like vortex(HLV),and its intensity and resulting energy loss tend to decrease along the vortex trajectory.The HLV changes the dominant frequency of the pressure fluctuations in the nearby flow field,the value of which increases from 1fr(the blade passing frequency)to 2fr with increased amplitude,mainly due to the lower pressure regions on the impeller suction surface(SS)and HLV vortex core.Due to the effect of rotor-stator interaction(RSI),the HLVs generated between two adjacent impeller blades are cut into several sections by the diffuser vanes and propagate and dissipate along the mainstream direction.展开更多
Peristalsis is widely seen in nature, as this pumping action is important in digestive systems for conveying sustenance to every corner of the body. In this paper, we propose a muscle-powered tubular micro pump that p...Peristalsis is widely seen in nature, as this pumping action is important in digestive systems for conveying sustenance to every corner of the body. In this paper, we propose a muscle-powered tubular micro pump that provides peristaltic transport. We utilized Drosophila melanogaster larvae that express channelrhodopsin-2 (ChR2) on the cell membrane of skeletal muscles to obtain light-responsive muscle tissues. The larvae were forced to contract with blue light stimulation. While changing the speed of the propagating light stimulation, we observed displacement on the surface of the contractile muscle tissues. We obtained peristaltic pumps from the larvae by dissecting them into tubular structures. The average inner diameter of the tubular structures was about 400 lm and the average outer diameter was about 750 lm. Contractions of this tubular structure could be controlled with the same blue light stimulation. To make the inner flow visible, we placed microbeads into the peristaltic pump, and thus determined that the pump could transport microbeads at a speed of 120 lm-s1.展开更多
基金support by the 11th Five Year Key Project of China’s National Scientific Supporting Plan(Grant No.2006BAB04A03)the Hydraulic Engineering Project from the Water Resources Department of Jiangsu Province(Grant No.2010023)
文摘Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft suction box and a siphon-type discharge passage with a vacuum breaker as the cutoff device was developed , which possesses such advantages as simple structure , reliable cutoff , and high energy performance.Taking some pumping stations as the case studies , in the light of the specified operation conditions , the hydraulic optimal design of the shaft-type tubular pumping system was determined and the optimized shape of the system was recommended.The performance prediction based on the computational fluid dynamics methodology was determined and the model test verification was conducted.The results show that the predicted data agree with the experimental head and efficiency so that both methods can be used to determine the performance of a real pumping station.Finally , the in-situ measurements of a pumping station during the commissioning period further verified that the shaft-type tubular pumping station with a siphon discharge passage is of higher efficiency , more reliable and stable.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51979125,52209111 and U2016225).
文摘Impeller hub corner separation flow(IHCS)has a significant influence on energy conversion of the bulb tubular pump,and its unsteady characteristics are investigated with CFD-based method.The generation mechanism and power loss characteristics of IHCS are investigated by the entropy production method and pressure fluctuation analysis.The main cause can be attributed to the large transverse pressure gradient near the hub at the trailing edge of the impeller,which is aggravated by the circumferential movement trend and the diffuser reverse flow,while the IHCS is significantly weakened with increased flow rate.The undesirable flow behavior is more likely to cause a significant increase in energy loss near the hub region compared to that in the rim region.The relative vortex stretching induced by the velocity gradient is the main cause of the horn-like vortex(HLV),and its intensity and resulting energy loss tend to decrease along the vortex trajectory.The HLV changes the dominant frequency of the pressure fluctuations in the nearby flow field,the value of which increases from 1fr(the blade passing frequency)to 2fr with increased amplitude,mainly due to the lower pressure regions on the impeller suction surface(SS)and HLV vortex core.Due to the effect of rotor-stator interaction(RSI),the HLVs generated between two adjacent impeller blades are cut into several sections by the diffuser vanes and propagate and dissipate along the mainstream direction.
基金supported by Grant-in-Aid for Japan Society for the Promotion of Science(JSPS)Fellow(17J01742)JSPS,MEXT KAKENHI(21676002,23111705,26249027,and 17H01254)the Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization(NEDO)of Japan
文摘Peristalsis is widely seen in nature, as this pumping action is important in digestive systems for conveying sustenance to every corner of the body. In this paper, we propose a muscle-powered tubular micro pump that provides peristaltic transport. We utilized Drosophila melanogaster larvae that express channelrhodopsin-2 (ChR2) on the cell membrane of skeletal muscles to obtain light-responsive muscle tissues. The larvae were forced to contract with blue light stimulation. While changing the speed of the propagating light stimulation, we observed displacement on the surface of the contractile muscle tissues. We obtained peristaltic pumps from the larvae by dissecting them into tubular structures. The average inner diameter of the tubular structures was about 400 lm and the average outer diameter was about 750 lm. Contractions of this tubular structure could be controlled with the same blue light stimulation. To make the inner flow visible, we placed microbeads into the peristaltic pump, and thus determined that the pump could transport microbeads at a speed of 120 lm-s1.