期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Development and Application of a Shaft-type Tubular Pumping System with a Siphon Discharge Passage 被引量:7
1
作者 ZHANG Ren-tian ZHU Hong-geng DAI Long-yang 《南水北调与水利科技》 CAS CSCD 北大核心 2013年第1期J0001-J0006,共6页
Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft su... Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft suction box and a siphon-type discharge passage with a vacuum breaker as the cutoff device was developed , which possesses such advantages as simple structure , reliable cutoff , and high energy performance.Taking some pumping stations as the case studies , in the light of the specified operation conditions , the hydraulic optimal design of the shaft-type tubular pumping system was determined and the optimized shape of the system was recommended.The performance prediction based on the computational fluid dynamics methodology was determined and the model test verification was conducted.The results show that the predicted data agree with the experimental head and efficiency so that both methods can be used to determine the performance of a real pumping station.Finally , the in-situ measurements of a pumping station during the commissioning period further verified that the shaft-type tubular pumping station with a siphon discharge passage is of higher efficiency , more reliable and stable. 展开更多
关键词 shaft-type tubular pumping station siphon discharge passage development application hydraulic optimal design model test
下载PDF
Numerical investigation on the mechanism of impeller hub corner separation flow and induced energy loss in the bulb tubular pump 被引量:1
2
作者 Long-yue Sun Qiang Pan +2 位作者 De-sheng Zhang Rui-jie Zhao B.P.M.(Bart)van Esch 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第2期252-267,共16页
Impeller hub corner separation flow(IHCS)has a significant influence on energy conversion of the bulb tubular pump,and its unsteady characteristics are investigated with CFD-based method.The generation mechanism and p... Impeller hub corner separation flow(IHCS)has a significant influence on energy conversion of the bulb tubular pump,and its unsteady characteristics are investigated with CFD-based method.The generation mechanism and power loss characteristics of IHCS are investigated by the entropy production method and pressure fluctuation analysis.The main cause can be attributed to the large transverse pressure gradient near the hub at the trailing edge of the impeller,which is aggravated by the circumferential movement trend and the diffuser reverse flow,while the IHCS is significantly weakened with increased flow rate.The undesirable flow behavior is more likely to cause a significant increase in energy loss near the hub region compared to that in the rim region.The relative vortex stretching induced by the velocity gradient is the main cause of the horn-like vortex(HLV),and its intensity and resulting energy loss tend to decrease along the vortex trajectory.The HLV changes the dominant frequency of the pressure fluctuations in the nearby flow field,the value of which increases from 1fr(the blade passing frequency)to 2fr with increased amplitude,mainly due to the lower pressure regions on the impeller suction surface(SS)and HLV vortex core.Due to the effect of rotor-stator interaction(RSI),the HLVs generated between two adjacent impeller blades are cut into several sections by the diffuser vanes and propagate and dissipate along the mainstream direction. 展开更多
关键词 Bulb tubular pump corner separation entropy production pressure fluctuation visualization analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部