The treatments of malignant diseases nowadays are rapidly developing. One of the groups of novel therapies applies electromagnetic fields to destroy the malignant lesions. The thermal (heating) and nonthermal (polariz...The treatments of malignant diseases nowadays are rapidly developing. One of the groups of novel therapies applies electromagnetic fields to destroy the malignant lesions. The thermal (heating) and nonthermal (polarization, molecular excitations) processes are combined in novel methods. The non-ionizing energy absorption from the electric field may produce substantial heat, increasing the targeted lesion’s temperature and inducing hyperthermic effects. The modulated electro-hyperthermia (mEHT) uses thermal conditions to optimize and accelerate the chemical reactions induced by the nonthermal excitation of the electric field. The mEHT cooperates with the body’s homeostatic control and harmonizes the mutual efforts to destroy the malignancy. Our objective is to show in vivo proof of the combined complementary electromagnetic impact on various tumors produced by mEHT. Furthermore, we present evidence of the increasing efficacy of the complementary application of mEHT with conventional treatments.展开更多
文摘The treatments of malignant diseases nowadays are rapidly developing. One of the groups of novel therapies applies electromagnetic fields to destroy the malignant lesions. The thermal (heating) and nonthermal (polarization, molecular excitations) processes are combined in novel methods. The non-ionizing energy absorption from the electric field may produce substantial heat, increasing the targeted lesion’s temperature and inducing hyperthermic effects. The modulated electro-hyperthermia (mEHT) uses thermal conditions to optimize and accelerate the chemical reactions induced by the nonthermal excitation of the electric field. The mEHT cooperates with the body’s homeostatic control and harmonizes the mutual efforts to destroy the malignancy. Our objective is to show in vivo proof of the combined complementary electromagnetic impact on various tumors produced by mEHT. Furthermore, we present evidence of the increasing efficacy of the complementary application of mEHT with conventional treatments.