Nonresectable Low-Grade Astrocytomas (LGA) can compromise function and threaten life. For the majority of patients, the most appropriate strategy is initial chemotherapy followed by Radiation Therapy (RT). Since curat...Nonresectable Low-Grade Astrocytomas (LGA) can compromise function and threaten life. For the majority of patients, the most appropriate strategy is initial chemotherapy followed by Radiation Therapy (RT). Since curative treatment is not available for most of these patients, it is reasonable to conduct clinical studies to evaluate new agents. This Phase II study evaluates efficacy and safety of Antineoplastons A10 and AS2-1 (ANP) in LGA. Sixteen children diagnosed with LGA were treated. They included 12 males and 4 females, ages 1.6 - 17.4 years (median 10.6). Efficacy was evaluated in 16 patients. The majority of patients were previously treated, but 1 patient had stereotactic biopsy only. Out of the remaining 15 patients, 6 patients received chemotherapy, and 7 patients had surgery, and 2 patients received RT and chemotherapy after surgery. The patients received treatment with ANP administered daily every 4 hours (median dose of A10 was 7.71 g/kg/d and AS2-1 was 0.26 g/kg/d) until objective response or stable disease was documented and for 8 months thereafter. The duration of ANP IV ranged from 1.4 to 286 weeks with a median of 83 weeks. A complete response was documented in 25.0%, partial response in 12.5%, and stable disease in 37.5%. Overall survival was 67.7% at 5 years, and 54.2% at 10 and 15 years. Progression-free survival was 48.1%, 34.4% and 34.4% at 5, 10, and 15 years respectively. The treatment was associated with grade 3 or grade 4 Adverse Drug Experiences (ADE) in 6 patients. There were two hypernatremias of grade 4 (12%). Grade 3 ADE included urinary frequency (6%), fatigue (6%) and hypernatremia (6%). There were no chronic toxicities, and there was a high quality of survival. ANP shows efficacy with a very good toxicity profile in this cohort of children with low-grade astrocytoma.展开更多
Development of an in vitro three-dimensional(3D) model that closely mimics actual environment of tissue has become extraordinarily important for anti-cancer study. In recent years, various 3D cell culture systems have...Development of an in vitro three-dimensional(3D) model that closely mimics actual environment of tissue has become extraordinarily important for anti-cancer study. In recent years, various 3D cell culture systems have been developed,with multicellular tumor spheroids being the most popular and effective model. In this work, we present a microfluidic device used as a robust platform for generating core–shell hydrogel microspheres with precisely controlled sizes and varied components of hydrogel matrix. To gain a better understanding of the governing mechanism of microsphere formation,computational models based on multiphase flow were developed to numerically model the droplet generation and velocity field evolution process with COMSOL Multiphysics software. Our modeling results show good agreement with experiments in size dependence on flow rate as well as effect of vortex flow on microsphere formation. With real-time tuning of the flow rates of aqueous phase and oil phase, tumor cells were encapsulated into the microspheres with controllable core–shell structure and different volume ratios of core(comprised of alginate, Matrigel, and/or Collagen) and shell(comprised of alginate). Viability of cells in four different hydrogel matrices were evaluated by standard acridine orange(AO) and propidium iodide(PI) staining. The proposed microfluidic system can play an important role in engineering the in vitro micro-environment of tumor spheroids to better mimic the actual in vivo 3D spatial structure of a tumor and perfect the 3D tumor models for more effective clinical therapies.展开更多
A myriad of medicinal effects has been attributed to Thymoquinone (TQ), the major biological-active component of Nigella sativa. TQ has been shown to exhibit potent anti-tumor activities. The present work was undertak...A myriad of medicinal effects has been attributed to Thymoquinone (TQ), the major biological-active component of Nigella sativa. TQ has been shown to exhibit potent anti-tumor activities. The present work was undertaken to further explore TQ’s chemopreventive efficacy against 1, 2-dimethylhydrazine (DMH)-induced colon carcinogenesis in the rat model through a two-phase study (initiation and post-initiation) and to evaluate its potential impact on tumor progression and invasion in vivo. TQ treatment in the initiation phase significantly reduced tumor incidence, multiplicity and mean tumor volume. However, although mean tumor volume and multiplicity were decreased upon TQ treatment in the post-initiation phase, TQ did not reduce incidence significantly. Cellular proliferation, as assessed by expression of colonic PCNA, was shown to be inhibited in consequence to TQ treatment in both phases, with a more pronounced reduction in the initiation phase. In addition, our results demonstrated an appreciable negative impact of TQ on vascular endothelial growth factor (VEGF) production in tumor-bearing rats. Furthermore, we provided evidence that TQ-treatment, in both phases, tended to considerably suppress tumor progression and invasion. Taken together, the present study demonstrated that TQ, at an orally daily dose of 10 mg/kg, has a chemopreventive effect in the initiation phase, and has the potential to attenuate tumor burden, suppress progression of pre-neoplastic lesions and to inhibit tumor growth in the post-initiation phase of DMH-induced colon carcinogenesis, We surmise that such effects of TQ may be due to suppression of cellular proliferation and inhibition of VEGF production. The results could provide an effective chemopreventive approach in the primary prevention of colon cancer in humans in the next future, and illuminate a promising horizon to combat progression of benign colonic pre-neoplastic lesions into malignant metastatic tumors and to manage colon cancer.展开更多
文摘Nonresectable Low-Grade Astrocytomas (LGA) can compromise function and threaten life. For the majority of patients, the most appropriate strategy is initial chemotherapy followed by Radiation Therapy (RT). Since curative treatment is not available for most of these patients, it is reasonable to conduct clinical studies to evaluate new agents. This Phase II study evaluates efficacy and safety of Antineoplastons A10 and AS2-1 (ANP) in LGA. Sixteen children diagnosed with LGA were treated. They included 12 males and 4 females, ages 1.6 - 17.4 years (median 10.6). Efficacy was evaluated in 16 patients. The majority of patients were previously treated, but 1 patient had stereotactic biopsy only. Out of the remaining 15 patients, 6 patients received chemotherapy, and 7 patients had surgery, and 2 patients received RT and chemotherapy after surgery. The patients received treatment with ANP administered daily every 4 hours (median dose of A10 was 7.71 g/kg/d and AS2-1 was 0.26 g/kg/d) until objective response or stable disease was documented and for 8 months thereafter. The duration of ANP IV ranged from 1.4 to 286 weeks with a median of 83 weeks. A complete response was documented in 25.0%, partial response in 12.5%, and stable disease in 37.5%. Overall survival was 67.7% at 5 years, and 54.2% at 10 and 15 years. Progression-free survival was 48.1%, 34.4% and 34.4% at 5, 10, and 15 years respectively. The treatment was associated with grade 3 or grade 4 Adverse Drug Experiences (ADE) in 6 patients. There were two hypernatremias of grade 4 (12%). Grade 3 ADE included urinary frequency (6%), fatigue (6%) and hypernatremia (6%). There were no chronic toxicities, and there was a high quality of survival. ANP shows efficacy with a very good toxicity profile in this cohort of children with low-grade astrocytoma.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474345,11674043,and 11604030)the Fundamental and Advanced Research Program of Chongqing(Grant No.cstc2018jcyjAX0338)
文摘Development of an in vitro three-dimensional(3D) model that closely mimics actual environment of tissue has become extraordinarily important for anti-cancer study. In recent years, various 3D cell culture systems have been developed,with multicellular tumor spheroids being the most popular and effective model. In this work, we present a microfluidic device used as a robust platform for generating core–shell hydrogel microspheres with precisely controlled sizes and varied components of hydrogel matrix. To gain a better understanding of the governing mechanism of microsphere formation,computational models based on multiphase flow were developed to numerically model the droplet generation and velocity field evolution process with COMSOL Multiphysics software. Our modeling results show good agreement with experiments in size dependence on flow rate as well as effect of vortex flow on microsphere formation. With real-time tuning of the flow rates of aqueous phase and oil phase, tumor cells were encapsulated into the microspheres with controllable core–shell structure and different volume ratios of core(comprised of alginate, Matrigel, and/or Collagen) and shell(comprised of alginate). Viability of cells in four different hydrogel matrices were evaluated by standard acridine orange(AO) and propidium iodide(PI) staining. The proposed microfluidic system can play an important role in engineering the in vitro micro-environment of tumor spheroids to better mimic the actual in vivo 3D spatial structure of a tumor and perfect the 3D tumor models for more effective clinical therapies.
文摘A myriad of medicinal effects has been attributed to Thymoquinone (TQ), the major biological-active component of Nigella sativa. TQ has been shown to exhibit potent anti-tumor activities. The present work was undertaken to further explore TQ’s chemopreventive efficacy against 1, 2-dimethylhydrazine (DMH)-induced colon carcinogenesis in the rat model through a two-phase study (initiation and post-initiation) and to evaluate its potential impact on tumor progression and invasion in vivo. TQ treatment in the initiation phase significantly reduced tumor incidence, multiplicity and mean tumor volume. However, although mean tumor volume and multiplicity were decreased upon TQ treatment in the post-initiation phase, TQ did not reduce incidence significantly. Cellular proliferation, as assessed by expression of colonic PCNA, was shown to be inhibited in consequence to TQ treatment in both phases, with a more pronounced reduction in the initiation phase. In addition, our results demonstrated an appreciable negative impact of TQ on vascular endothelial growth factor (VEGF) production in tumor-bearing rats. Furthermore, we provided evidence that TQ-treatment, in both phases, tended to considerably suppress tumor progression and invasion. Taken together, the present study demonstrated that TQ, at an orally daily dose of 10 mg/kg, has a chemopreventive effect in the initiation phase, and has the potential to attenuate tumor burden, suppress progression of pre-neoplastic lesions and to inhibit tumor growth in the post-initiation phase of DMH-induced colon carcinogenesis, We surmise that such effects of TQ may be due to suppression of cellular proliferation and inhibition of VEGF production. The results could provide an effective chemopreventive approach in the primary prevention of colon cancer in humans in the next future, and illuminate a promising horizon to combat progression of benign colonic pre-neoplastic lesions into malignant metastatic tumors and to manage colon cancer.