期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Frequency-octupled phase-coded signal generation based on carrier-suppressed high-order double sideband modulation 被引量:1
1
作者 李轩 赵尚弘 +3 位作者 朱子行 屈坤 林涛 潘时龙 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第7期18-21,共4页
An approach for photonic generation of a frequency-octupled phase-coded signal based on carrier-suppressed high-order double sideband modulation is proposed and experimentally demonstrated. The key component of the sc... An approach for photonic generation of a frequency-octupled phase-coded signal based on carrier-suppressed high-order double sideband modulation is proposed and experimentally demonstrated. The key component of the scheme is an integrated dual-polarization quadrature phase shift keying modulator, which is used to achieve the carrier-suppressed high-order double sideband modulation. At the output of the modulator, two fourth-order optical sidebands are generated with the optical carrier suppressed. After that, a Sagnac loop incorporating a fiber Bragg grating and a phase modulator is employed to separate the two optical sidebands and phase modulate one sideband with a binary coding signal. The approach features large carrier frequency tuning range for the generated phase-coded signal from several megahertz to beyond the W-band. A proof-of-concept experiment is carried out. The 2 Gbit/s phase-coded signals with frequencies of 16.48, 21.92, and 29.76 GHz are generated. 展开更多
关键词 suppressed coded modulator quadrature photonic tuning Bragg grating proof keying
原文传递
A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation
2
作者 XU Dong 《Optoelectronics Letters》 EI 2017年第1期13-15,共3页
A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation is proposed and demonstrated. The complex coefficient is generated using a Fourier-domain optical processor(FD-... A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation is proposed and demonstrated. The complex coefficient is generated using a Fourier-domain optical processor(FD-OP) to control the amplitude and phase of the optical carrier and radio-frequency(RF) phase modulation sidebands. By controlling the FD-OP,the frequency response of the filter can be tuned in the full free spectral range(FSR) without changing the shape and the FSR of the frequency response. The results show that the center frequency of the notch filter can be continuously tuned from 17.582 GHz to 29.311 GHz with FSR of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned. 展开更多
关键词 notch photonic tunable continuously microwave tuned unchanged processor modulator coupler
原文传递
Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity 被引量:1
3
作者 Xiaodan Zhao Yibiao Yang +3 位作者 Zhihui Chen Yuncai Wang Hongming Fei Xiao Deng 《Journal of Semiconductors》 EI CAS CSCD 2017年第2期26-30,共5页
By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modula... By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic Li F/Ga Sb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range. 展开更多
关键词 photonic crystal filters transfer matrix method single resonant peak ultra-wide tuning range mechanical modulation
原文传递
Tunable fiber laser based on a cascaded structure consisting of in-line MZI and traditional MZI
4
作者 童峥嵘 杨贺 张卫华 《Optoelectronics Letters》 EI 2016年第6期437-440,共4页
A tunable erbium-doped fiber(EDF) laser with a cascaded structure consisting of in-line Mach-Zehnder interferometer(MZI) and traditional MZI is proposed. The transmission spectrum of the in-line MZI is modulated b... A tunable erbium-doped fiber(EDF) laser with a cascaded structure consisting of in-line Mach-Zehnder interferometer(MZI) and traditional MZI is proposed. The transmission spectrum of the in-line MZI is modulated by the traditional MZI, which determines the period of the cascaded structure, while the in-line MZI's transmission spectrum is the outer envelope curve of the cascaded structure's transmission spectrum. A stable single-wavelength lasing operation is obtained at 1 527.14 nm. The linewidth is less than 0.07 nm with a side-mode suppression ratio(SMSR) over 48 d B. Fixing the in-line MZI structure on a furnace, when the temperature changes from 30 ℃ to 230 ℃, the central wavelength can be tuned within the range of 12.4 nm. 展开更多
关键词 cascaded lasing tunable interferometer suppression outer modulated tuned cladding hollow
原文传递
Micro EEG/ECG signal's chopper-stabilization amplifying chip for novel drycontact electrode 被引量:1
5
作者 Jianhui Sun Chunxing Wang +8 位作者 Gongtang Wang Jinhui Wang Qing Hua Chuanfu Cheng Xinxia Cai Tao Yin Yang Yu Haigang Yang Dengwang Li 《Journal of Semiconductors》 EI CAS CSCD 2017年第2期96-104,共9页
Facing the body's EEG(electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG's(electrocardiogram,〈 100 Hz, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro sign... Facing the body's EEG(electroencephalograph, 0.5–100 Hz, 5–100 μV) and ECG's(electrocardiogram,〈 100 Hz, 0.01–5 mV) micro signal detection requirement, this paper develops a pervasive application micro signal detection ASIC chip with the chopping modulation/demodulation method. The chopper-stabilization circuit with the RRL(ripple reduction loop) circuit is to suppress the ripple voltage, which locates at the single-stage amplifier's outputting terminal. The single-stage chopping core's noise has been suppressed too, and it is beneficial for suppressing noises of post-circuit. The chopping core circuit uses the PFB(positive feedback loop) to increase the inputting resistance, and the NFB(negative feedback loop) to stabilize the 40 dB intermediate frequency gain. The cascaded switch-capacitor sample/hold circuit has been used for deleting spike noises caused by non-ideal MOS switches, and the VGA/BPF(voltage gain amplifier/band pass filter) circuit is used to tune the chopper system's gain/bandwidth digitally. Assisted with the designed novel dry-electrode, the real test result of the chopping amplifying circuit gives some critical parameters: 8.1 μW/channel, 0.8 μVrms(@band-widthD100 Hz), 4216–11220 times digitally tuning gain range, etc. The data capture system uses the NI CO's data capturing DAQmx interface,and the captured micro EEG/ECG's waves are real-time displayed with the PC-Labview. The proposed chopper system is a unified EEG/ECG signal's detection instrument and has a critical real application value. 展开更多
关键词 EEG/ECG novel dry-contact electrode weak and micro signal detection chopping modulation/demodulation de-noising gain/band width digitally tuning
原文传递
Microwave photonic notch filter with complex coefficient based on four wave mixing
6
作者 许东 曹晔 +1 位作者 童峥嵘 杨菁芃 《Optoelectronics Letters》 EI 2016年第6期417-420,共4页
A microwave photonic notch filter with a complex coefficient is proposed and demonstrated based on four wave mixing(FWM). FWM effect of two single-frequency laser beams occurs in a highly nonlinear fiber(HNLF), and mu... A microwave photonic notch filter with a complex coefficient is proposed and demonstrated based on four wave mixing(FWM). FWM effect of two single-frequency laser beams occurs in a highly nonlinear fiber(HNLF), and multi-wavelength optical signals are generated and used to generate the multi-tap of microwave photonic filter(MPF). The complex coefficient is generated by using a Fourier-domain optical processor(FD-OP) to control the amplitude and phase of the optical carrier and phase modulation sidebands. The results show that this filter can be changed from bandpass filter to notch filter by controlling the FD-OP. The center frequency of the notch filter can be continuously tuned from 5.853 GHz to 29.311 GHz with free spectral range(FSR) of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned. 展开更多
关键词 notch photonic mixing tuned processor microwave unchanged continuously tunable modulator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部