Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk...Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.展开更多
At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of...At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutterhead gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased.展开更多
Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the anal...Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the analyses of cutter motion in the rock breaking process and trajectory of rock breaking point on the cutter edge in rocks. The analytical expressions of the length of face along which the breaking point moves and the length of spiral trajectory of the maximum penetration point are derived. Through observation of rock breaking process of disc cutters as well as analysis of disc rock interaction, the following concepts are proposed: the arc length theory of predicting wear extent of inner and center cutters, and the spiral theory of predicting wear extent of gage and transition cutters. Data obtained from5621 m-long Qinling tunnel reveal that among 39 disc cutters, the relative errors between cumulatively predicted and measured wear values for nine cutters are larger than 20%, while approximately 76.9% of total cutters have the relative errors less than 20%. The proposed method could offer a new attempt to predict the disc cutter's wear extent and changing time.展开更多
The failure of the key parts, such as gears, in cutter head driving system of tunneling boring machine has not been properly solved under the interaction of driving motors asynchronously and wave tunneling torque load...The failure of the key parts, such as gears, in cutter head driving system of tunneling boring machine has not been properly solved under the interaction of driving motors asynchronously and wave tunneling torque load. A dynamic model of multi-gear driving system is established considering the inertia effects of driving mechanism and cutter head as well as the bending-torsional coupling. By taking into account the nonlinear coupling factors between ring gear and multiple pinions, the influence for meshing angle by bending-torsional coupling and the dynamic load-sharing characteristic of multiple pinions driving are analyzed. Load-sharing coefficients at different rotating cutter head speeds and input torques are presented. Numerical results indicate that the load-sharing coefficients can reach up to 1.2-1.3. A simulated experimental platform of the multiple pinions driving is carried out and the torque distributions under the step load in driving shaft of pinions are measured. The imbalance of torque distribution of pinions is verified and the load-sharing coefficients in each pinion can reach 1.262. The results of simulation and test are similar, which shows the correctness of theoretical model. A loop coupling control method is put forward based on current torque master slave control method. The imbalance of the multiple pinions driving in cutter head driving system of tunneling boring machine can be greatly decreased and the load-sharing coefficients can be reduced to 1.051 by using the loop coupling control method. The proposed research provides an effective solution to the imbalance of torque distribution and synchronous control method for multiple pinions driving of TBM.展开更多
A12.24km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine(TBM)to improve the water supply system of Greater Mumbai,India.In this paper,attempt has been made to establish the ...A12.24km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine(TBM)to improve the water supply system of Greater Mumbai,India.In this paper,attempt has been made to establish the relationship between various litho-units of Deccan traps,stability of tunnel and TBM performances during the construction of5.83km long tunnel between Maroshi and Vakola.The Maroshi–Vakola tunnel passes under the Mumbai Airport and crosses both runways with an overburden cover of around70m.The tunneling work was carried out without disturbance to the ground.The rock types encountered during excavation arefine compacted basalt,porphyritic basalt,amygdaloidal basalt pyroclastic rocks with layers of red boles and intertrappean beds consisting of various types of shales Relations between rock mass properties,physico-mechanical properties,TBM specifications and the cor responding TBM performance were established.A number of support systems installed in the tunne during excavation were also discussed.The aim of this paper is to establish,with appropriate accuracy the nature of subsurface rock mass condition and to study how it will react to or behave during under ground excavation by TBM.The experiences gained from this project will increase the ability to cope with unexpected ground conditions during tunneling using TBM.展开更多
Real-time perception of rock mass information is of great importance to efficient tunneling and hazard prevention in tunnel boring machines(TBMs).In this study,a TBM-rock mutual feedback perception method based on dat...Real-time perception of rock mass information is of great importance to efficient tunneling and hazard prevention in tunnel boring machines(TBMs).In this study,a TBM-rock mutual feedback perception method based on data mining(DM) is proposed,which takes 10 tunneling parameters related to surrounding rock conditions as input features.For implementation,first,the database of TBM tunneling parameters was established,in which 10,807 tunneling cycles from the Songhua River water conveyance tunnel were accommodated.Then,the spectral clustering(SC) algorithm based on graph theory was introduced to cluster the TBM tunneling data.According to the clustering results and rock mass boreability index,the rock mass conditions were classified into four classes,and the reasonable distribution intervals of the main tunneling parameters corresponding to each class were presented.Meanwhile,based on the deep neural network(DNN),the real-time prediction model regarding different rock conditions was established.Finally,the rationality and adaptability of the proposed method were validated via analyzing the tunneling specific energy,feature importance,and training dataset size.The proposed TBM-rock mutual feedback perception method enables the automatic identification of rock mass conditions and the dynamic adjustment of tunneling parameters during TBM driving.Furthermore,in terms of the prediction performance,the method can predict the rock mass conditions ahead of the tunnel face in real time more accurately than the traditional machine learning prediction methods.展开更多
Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for...Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for China’s first URL,named Beishan URL.For this,a preliminary design of the Beishan URL has been proposed,including one spiral ramp,three shafts and two experimental levels.With advantages of fast advancing and limited disturbance to surrounding rock mass,the tunnel boring machine(TBM)method could be one of the excavation methods considered for the URL ramp.This paper introduces the feasibility study on using TBM to excavation of the Beishan URL ramp.The technical challenges for using TBM in Beishan URL are identified on the base of geological condition and specific layout of the spiral ramp.Then,the technical feasibility study on the specific issues,i.e.extremely hard rock mass,high abrasiveness,TBM operation,muck transportation,water drainage and material transportation,is investigated.This study demonstrates that TBM technology is a feasible method for the Beishan URL excavation.The results can also provide a reference for the design and construction of HLW disposal engineering in similar geological conditions.2020 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
Tunnel boring machine(TBM) vibration induced by cutting complex ground contains essential information that can help engineers evaluate the interaction between a cutterhead and the ground itself.In this study,deep recu...Tunnel boring machine(TBM) vibration induced by cutting complex ground contains essential information that can help engineers evaluate the interaction between a cutterhead and the ground itself.In this study,deep recurrent neural networks(RNNs) and convolutional neural networks(CNNs) were used for vibration-based working face ground identification.First,field monitoring was conducted to obtain the TBM vibration data when tunneling in changing geological conditions,including mixed-face,homogeneous,and transmission ground.Next,RNNs and CNNs were utilized to develop vibration-based prediction models,which were then validated using the testing dataset.The accuracy of the long short-term memory(LSTM) and bidirectional LSTM(Bi-LSTM) models was approximately 70% with raw data;however,with instantaneous frequency transmission,the accuracy increased to approximately 80%.Two types of deep CNNs,GoogLeNet and ResNet,were trained and tested with time-frequency scalar diagrams from continuous wavelet transformation.The CNN models,with an accuracy greater than 96%,performed significantly better than the RNN models.The ResNet-18,with an accuracy of 98.28%,performed the best.When the sample length was set as the cutterhead rotation period,the deep CNN and RNN models achieved the highest accuracy while the proposed deep CNN model simultaneously achieved high prediction accuracy and feedback efficiency.The proposed model could promptly identify the ground conditions at the working face without stopping the normal tunneling process,and the TBM working parameters could be adjusted and optimized in a timely manner based on the predicted results.展开更多
This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project sche...This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project scheduling in tunnelling and underground projects in a rock environment.For this purpose,a sum of 185 datasets was collected from the literature and used to predict the ROP of TBM.Initially,the main dataset was utilised to construct and validate four conventional soft computing(CSC)models,i.e.minimax probability machine regression,relevance vector machine,extreme learning machine,and functional network.Consequently,the estimated outputs of CSC models were united and trained using an artificial neural network(ANN) to construct a hybrid ensemble model(HENSM).The outcomes of the proposed HENSM are superior to other CSC models employed in this study.Based on the experimental results(training RMSE=0.0283 and testing RMSE=0.0418),the newly proposed HENSM is potential to assist engineers in predicting ROP of TBM in the design phase of tunnelling and underground projects.展开更多
Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented...Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process.展开更多
Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where T...Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where TBMs are increasingly large in diameter and shallow in depth.In response to this problem,four experimental campaigns were carried out in different geotechnical contexts in France.The vibration measurements were acquired on the surface and inside the TBMs.These measurements are also complemented by few data in the literature.An original methodology of signal processing is pro-posed to characterize the amplitude of the particle velocities,as well as the frequency content of the signals to highlight the most energetic bands.The levels of vibrations are also compared with the thresholds existing in various European regulations concerning the impact on neighbouring structures and the disturbance to local residents.展开更多
Field penetration index(FPI) is one of the representative key parameters to examine the tunnel boring machine(TBM) performance.Lack of accurate FPI prediction can be responsible for numerous disastrous incidents assoc...Field penetration index(FPI) is one of the representative key parameters to examine the tunnel boring machine(TBM) performance.Lack of accurate FPI prediction can be responsible for numerous disastrous incidents associated with rock mechanics and engineering.This study aims to predict TBM performance(i.e.FPI) by an efficient and improved adaptive neuro-fuzzy inference system(ANFIS) model.This was done using an evolutionary algorithm,i.e.artificial bee colony(ABC) algorithm mixed with the ANFIS model.The role of ABC algorithm in this system is to find the optimum membership functions(MFs) of ANFIS model to achieve a higher degree of accuracy.The procedure and modeling were conducted on a tunnelling database comprising of more than 150 data samples where brittleness index(BI),fracture spacing,α angle between the plane of weakness and the TBM driven direction,and field single cutter load were assigned as model inputs to approximate FPI values.According to the results obtained by performance indices,the proposed ANFISABC model was able to receive the highest accuracy level in predicting FPI values compared with ANFIS model.In terms of coefficient of determination(R^(2)),the values of 0.951 and 0.901 were obtained for training and testing stages of the proposed ANFISABC model,respectively,which confirm its power and capability in solving TBM performance problem.The proposed model can be used in the other areas of rock mechanics and underground space technologies with similar conditions.展开更多
Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM)....Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions.展开更多
Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accu...Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one.展开更多
There are many examples of TBM tunnels through mountains, or in mountainous terrain, which have suffered the ultimate fate of abandonment, due to insufficient pre-investigation. Depth-of-drilling limitations are inevi...There are many examples of TBM tunnels through mountains, or in mountainous terrain, which have suffered the ultimate fate of abandonment, due to insufficient pre-investigation. Depth-of-drilling limitations are inevitable when depths approach or even exceed l or 2 km. Uncertainties about the geology, hydro-geology, rock stresses and rock strengths go hand-in-hand with deep or ultra-deep tunnels. Unfortunately, unexpected conditions tend to have a much bigger impact on TBM projects than on drill-and-blast projects. There are two obvious reasons. Firstly the circular excavation maximizes the tangential stress, making the relation to rock strength a higher source of potential risk. Secondly, the TBM may have been progressing fast enough to make probe-drilling seem to be unnecessary. If the stress-to-strength ratio becomes too high, or if faulted rock with high water pressure is unexpectedly encountered, the "unexpected events" may have a remarkable delaying effect on TBM. A simple equation explains this phenomenon, via the adverse local Q-value that links directly to utilization. One may witness dramatic reductions in utilization, meaning ultra-steep deceleration-of-the-TBM gradients in a log-log plot of advance rate versus time. Some delays can be avoided or reduced with new TBM designs, where belief in the need for probe-drilling and sometimes also pre-injection, have been fully appreciated. Drill-and-blast tunneling, inevitably involving numerous "probe-holes" prior to each advance, should be used instead, if investigations have been too limited. TBM should be used where there is lower cover and where more is known about the rock and structural conditions. The advantages of the superior speed of TBM may then be fully realized. Choosing TBM because a tunnel is very long increases risk due to the law of deceleration with increased length, especially if there is limited pre-investigation because of tunnel depth.展开更多
文摘Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.
基金supported by National Natural Science Foundation of China (Grant No. 51075147)
文摘At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutterhead gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased.
基金supported by the National Natural Science Foundation of China(Grant No.51475163)the National Hightech R&D Program of China(Grant No.2012AA041803)
文摘Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the analyses of cutter motion in the rock breaking process and trajectory of rock breaking point on the cutter edge in rocks. The analytical expressions of the length of face along which the breaking point moves and the length of spiral trajectory of the maximum penetration point are derived. Through observation of rock breaking process of disc cutters as well as analysis of disc rock interaction, the following concepts are proposed: the arc length theory of predicting wear extent of inner and center cutters, and the spiral theory of predicting wear extent of gage and transition cutters. Data obtained from5621 m-long Qinling tunnel reveal that among 39 disc cutters, the relative errors between cumulatively predicted and measured wear values for nine cutters are larger than 20%, while approximately 76.9% of total cutters have the relative errors less than 20%. The proposed method could offer a new attempt to predict the disc cutter's wear extent and changing time.
基金supported by National Basic Research Program of China(973 Program, Grant No. 2013CB035402)
文摘The failure of the key parts, such as gears, in cutter head driving system of tunneling boring machine has not been properly solved under the interaction of driving motors asynchronously and wave tunneling torque load. A dynamic model of multi-gear driving system is established considering the inertia effects of driving mechanism and cutter head as well as the bending-torsional coupling. By taking into account the nonlinear coupling factors between ring gear and multiple pinions, the influence for meshing angle by bending-torsional coupling and the dynamic load-sharing characteristic of multiple pinions driving are analyzed. Load-sharing coefficients at different rotating cutter head speeds and input torques are presented. Numerical results indicate that the load-sharing coefficients can reach up to 1.2-1.3. A simulated experimental platform of the multiple pinions driving is carried out and the torque distributions under the step load in driving shaft of pinions are measured. The imbalance of torque distribution of pinions is verified and the load-sharing coefficients in each pinion can reach 1.262. The results of simulation and test are similar, which shows the correctness of theoretical model. A loop coupling control method is put forward based on current torque master slave control method. The imbalance of the multiple pinions driving in cutter head driving system of tunneling boring machine can be greatly decreased and the load-sharing coefficients can be reduced to 1.051 by using the loop coupling control method. The proposed research provides an effective solution to the imbalance of torque distribution and synchronous control method for multiple pinions driving of TBM.
基金a part of the project "Universities Natural Science Research Project in Anhui Province" (KJ2011Z375)supported by Department of Education of Anhui Province
文摘A12.24km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine(TBM)to improve the water supply system of Greater Mumbai,India.In this paper,attempt has been made to establish the relationship between various litho-units of Deccan traps,stability of tunnel and TBM performances during the construction of5.83km long tunnel between Maroshi and Vakola.The Maroshi–Vakola tunnel passes under the Mumbai Airport and crosses both runways with an overburden cover of around70m.The tunneling work was carried out without disturbance to the ground.The rock types encountered during excavation arefine compacted basalt,porphyritic basalt,amygdaloidal basalt pyroclastic rocks with layers of red boles and intertrappean beds consisting of various types of shales Relations between rock mass properties,physico-mechanical properties,TBM specifications and the cor responding TBM performance were established.A number of support systems installed in the tunne during excavation were also discussed.The aim of this paper is to establish,with appropriate accuracy the nature of subsurface rock mass condition and to study how it will react to or behave during under ground excavation by TBM.The experiences gained from this project will increase the ability to cope with unexpected ground conditions during tunneling using TBM.
基金supported by the National Natural Science Foundation of China(Grant Nos.41772309 and 51908431)the Outstanding Youth Foundation of Hubei Province,China(Grant No.2019CFA074)。
文摘Real-time perception of rock mass information is of great importance to efficient tunneling and hazard prevention in tunnel boring machines(TBMs).In this study,a TBM-rock mutual feedback perception method based on data mining(DM) is proposed,which takes 10 tunneling parameters related to surrounding rock conditions as input features.For implementation,first,the database of TBM tunneling parameters was established,in which 10,807 tunneling cycles from the Songhua River water conveyance tunnel were accommodated.Then,the spectral clustering(SC) algorithm based on graph theory was introduced to cluster the TBM tunneling data.According to the clustering results and rock mass boreability index,the rock mass conditions were classified into four classes,and the reasonable distribution intervals of the main tunneling parameters corresponding to each class were presented.Meanwhile,based on the deep neural network(DNN),the real-time prediction model regarding different rock conditions was established.Finally,the rationality and adaptability of the proposed method were validated via analyzing the tunneling specific energy,feature importance,and training dataset size.The proposed TBM-rock mutual feedback perception method enables the automatic identification of rock mass conditions and the dynamic adjustment of tunneling parameters during TBM driving.Furthermore,in terms of the prediction performance,the method can predict the rock mass conditions ahead of the tunnel face in real time more accurately than the traditional machine learning prediction methods.
基金China Atomic Energy Authority is thanked for its financial support for this project.The authors would like to acknowledge China Railway Engineering Equipment Group Co.,Ltd.,China Railway Construction Heavy Industry Co.,Ltd.,Herrenknecht AG,China Railway 18th Bureau Group Co.,Ltd.,China Railway Tunnel Group Co.,Ltd.,and Liaoning Censcience Industry Co.,Ltd.for their technical support on this research.The valuable comments by two reviewers are appreciated as well.
文摘Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for China’s first URL,named Beishan URL.For this,a preliminary design of the Beishan URL has been proposed,including one spiral ramp,three shafts and two experimental levels.With advantages of fast advancing and limited disturbance to surrounding rock mass,the tunnel boring machine(TBM)method could be one of the excavation methods considered for the URL ramp.This paper introduces the feasibility study on using TBM to excavation of the Beishan URL ramp.The technical challenges for using TBM in Beishan URL are identified on the base of geological condition and specific layout of the spiral ramp.Then,the technical feasibility study on the specific issues,i.e.extremely hard rock mass,high abrasiveness,TBM operation,muck transportation,water drainage and material transportation,is investigated.This study demonstrates that TBM technology is a feasible method for the Beishan URL excavation.The results can also provide a reference for the design and construction of HLW disposal engineering in similar geological conditions.2020 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
基金supported by the National Natural Science Foundation of China(Grant No.52090082)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020ME243)the Shanghai Committee of Science and Technology(Grant No.19511100802)。
文摘Tunnel boring machine(TBM) vibration induced by cutting complex ground contains essential information that can help engineers evaluate the interaction between a cutterhead and the ground itself.In this study,deep recurrent neural networks(RNNs) and convolutional neural networks(CNNs) were used for vibration-based working face ground identification.First,field monitoring was conducted to obtain the TBM vibration data when tunneling in changing geological conditions,including mixed-face,homogeneous,and transmission ground.Next,RNNs and CNNs were utilized to develop vibration-based prediction models,which were then validated using the testing dataset.The accuracy of the long short-term memory(LSTM) and bidirectional LSTM(Bi-LSTM) models was approximately 70% with raw data;however,with instantaneous frequency transmission,the accuracy increased to approximately 80%.Two types of deep CNNs,GoogLeNet and ResNet,were trained and tested with time-frequency scalar diagrams from continuous wavelet transformation.The CNN models,with an accuracy greater than 96%,performed significantly better than the RNN models.The ResNet-18,with an accuracy of 98.28%,performed the best.When the sample length was set as the cutterhead rotation period,the deep CNN and RNN models achieved the highest accuracy while the proposed deep CNN model simultaneously achieved high prediction accuracy and feedback efficiency.The proposed model could promptly identify the ground conditions at the working face without stopping the normal tunneling process,and the TBM working parameters could be adjusted and optimized in a timely manner based on the predicted results.
文摘This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project scheduling in tunnelling and underground projects in a rock environment.For this purpose,a sum of 185 datasets was collected from the literature and used to predict the ROP of TBM.Initially,the main dataset was utilised to construct and validate four conventional soft computing(CSC)models,i.e.minimax probability machine regression,relevance vector machine,extreme learning machine,and functional network.Consequently,the estimated outputs of CSC models were united and trained using an artificial neural network(ANN) to construct a hybrid ensemble model(HENSM).The outcomes of the proposed HENSM are superior to other CSC models employed in this study.Based on the experimental results(training RMSE=0.0283 and testing RMSE=0.0418),the newly proposed HENSM is potential to assist engineers in predicting ROP of TBM in the design phase of tunnelling and underground projects.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 52074258, 41941018, and U21A20153)
文摘Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process.
文摘Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where TBMs are increasingly large in diameter and shallow in depth.In response to this problem,four experimental campaigns were carried out in different geotechnical contexts in France.The vibration measurements were acquired on the surface and inside the TBMs.These measurements are also complemented by few data in the literature.An original methodology of signal processing is pro-posed to characterize the amplitude of the particle velocities,as well as the frequency content of the signals to highlight the most energetic bands.The levels of vibrations are also compared with the thresholds existing in various European regulations concerning the impact on neighbouring structures and the disturbance to local residents.
基金supported by the Faculty Development Competitive Research Grant program of Nazarbayev University(Grant No.021220FD5151)。
文摘Field penetration index(FPI) is one of the representative key parameters to examine the tunnel boring machine(TBM) performance.Lack of accurate FPI prediction can be responsible for numerous disastrous incidents associated with rock mechanics and engineering.This study aims to predict TBM performance(i.e.FPI) by an efficient and improved adaptive neuro-fuzzy inference system(ANFIS) model.This was done using an evolutionary algorithm,i.e.artificial bee colony(ABC) algorithm mixed with the ANFIS model.The role of ABC algorithm in this system is to find the optimum membership functions(MFs) of ANFIS model to achieve a higher degree of accuracy.The procedure and modeling were conducted on a tunnelling database comprising of more than 150 data samples where brittleness index(BI),fracture spacing,α angle between the plane of weakness and the TBM driven direction,and field single cutter load were assigned as model inputs to approximate FPI values.According to the results obtained by performance indices,the proposed ANFISABC model was able to receive the highest accuracy level in predicting FPI values compared with ANFIS model.In terms of coefficient of determination(R^(2)),the values of 0.951 and 0.901 were obtained for training and testing stages of the proposed ANFISABC model,respectively,which confirm its power and capability in solving TBM performance problem.The proposed model can be used in the other areas of rock mechanics and underground space technologies with similar conditions.
基金Alexander von Humboldt-Foundation (AvH) for the financial support as a research fellowthe financial support of the Scientific and Technological Research Council of Turkey (TüB_ITAK) under Project No. MAG-114M568
文摘Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions.
基金Project(2010CB732004)supported by the National Basic Research Program of ChinaProjects(50934006,41272304)supported by the National Natural Science Foundation of China
文摘Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one.
文摘There are many examples of TBM tunnels through mountains, or in mountainous terrain, which have suffered the ultimate fate of abandonment, due to insufficient pre-investigation. Depth-of-drilling limitations are inevitable when depths approach or even exceed l or 2 km. Uncertainties about the geology, hydro-geology, rock stresses and rock strengths go hand-in-hand with deep or ultra-deep tunnels. Unfortunately, unexpected conditions tend to have a much bigger impact on TBM projects than on drill-and-blast projects. There are two obvious reasons. Firstly the circular excavation maximizes the tangential stress, making the relation to rock strength a higher source of potential risk. Secondly, the TBM may have been progressing fast enough to make probe-drilling seem to be unnecessary. If the stress-to-strength ratio becomes too high, or if faulted rock with high water pressure is unexpectedly encountered, the "unexpected events" may have a remarkable delaying effect on TBM. A simple equation explains this phenomenon, via the adverse local Q-value that links directly to utilization. One may witness dramatic reductions in utilization, meaning ultra-steep deceleration-of-the-TBM gradients in a log-log plot of advance rate versus time. Some delays can be avoided or reduced with new TBM designs, where belief in the need for probe-drilling and sometimes also pre-injection, have been fully appreciated. Drill-and-blast tunneling, inevitably involving numerous "probe-holes" prior to each advance, should be used instead, if investigations have been too limited. TBM should be used where there is lower cover and where more is known about the rock and structural conditions. The advantages of the superior speed of TBM may then be fully realized. Choosing TBM because a tunnel is very long increases risk due to the law of deceleration with increased length, especially if there is limited pre-investigation because of tunnel depth.