Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk...Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.展开更多
Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where T...Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where TBMs are increasingly large in diameter and shallow in depth.In response to this problem,four experimental campaigns were carried out in different geotechnical contexts in France.The vibration measurements were acquired on the surface and inside the TBMs.These measurements are also complemented by few data in the literature.An original methodology of signal processing is pro-posed to characterize the amplitude of the particle velocities,as well as the frequency content of the signals to highlight the most energetic bands.The levels of vibrations are also compared with the thresholds existing in various European regulations concerning the impact on neighbouring structures and the disturbance to local residents.展开更多
Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in...Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel.展开更多
At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of...At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutterhead gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased.展开更多
Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for...Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for China’s first URL,named Beishan URL.For this,a preliminary design of the Beishan URL has been proposed,including one spiral ramp,three shafts and two experimental levels.With advantages of fast advancing and limited disturbance to surrounding rock mass,the tunnel boring machine(TBM)method could be one of the excavation methods considered for the URL ramp.This paper introduces the feasibility study on using TBM to excavation of the Beishan URL ramp.The technical challenges for using TBM in Beishan URL are identified on the base of geological condition and specific layout of the spiral ramp.Then,the technical feasibility study on the specific issues,i.e.extremely hard rock mass,high abrasiveness,TBM operation,muck transportation,water drainage and material transportation,is investigated.This study demonstrates that TBM technology is a feasible method for the Beishan URL excavation.The results can also provide a reference for the design and construction of HLW disposal engineering in similar geological conditions.2020 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
Real-time perception of rock mass information is of great importance to efficient tunneling and hazard prevention in tunnel boring machines(TBMs).In this study,a TBM-rock mutual feedback perception method based on dat...Real-time perception of rock mass information is of great importance to efficient tunneling and hazard prevention in tunnel boring machines(TBMs).In this study,a TBM-rock mutual feedback perception method based on data mining(DM) is proposed,which takes 10 tunneling parameters related to surrounding rock conditions as input features.For implementation,first,the database of TBM tunneling parameters was established,in which 10,807 tunneling cycles from the Songhua River water conveyance tunnel were accommodated.Then,the spectral clustering(SC) algorithm based on graph theory was introduced to cluster the TBM tunneling data.According to the clustering results and rock mass boreability index,the rock mass conditions were classified into four classes,and the reasonable distribution intervals of the main tunneling parameters corresponding to each class were presented.Meanwhile,based on the deep neural network(DNN),the real-time prediction model regarding different rock conditions was established.Finally,the rationality and adaptability of the proposed method were validated via analyzing the tunneling specific energy,feature importance,and training dataset size.The proposed TBM-rock mutual feedback perception method enables the automatic identification of rock mass conditions and the dynamic adjustment of tunneling parameters during TBM driving.Furthermore,in terms of the prediction performance,the method can predict the rock mass conditions ahead of the tunnel face in real time more accurately than the traditional machine learning prediction methods.展开更多
The failure of the key parts, such as gears, in cutter head driving system of tunneling boring machine has not been properly solved under the interaction of driving motors asynchronously and wave tunneling torque load...The failure of the key parts, such as gears, in cutter head driving system of tunneling boring machine has not been properly solved under the interaction of driving motors asynchronously and wave tunneling torque load. A dynamic model of multi-gear driving system is established considering the inertia effects of driving mechanism and cutter head as well as the bending-torsional coupling. By taking into account the nonlinear coupling factors between ring gear and multiple pinions, the influence for meshing angle by bending-torsional coupling and the dynamic load-sharing characteristic of multiple pinions driving are analyzed. Load-sharing coefficients at different rotating cutter head speeds and input torques are presented. Numerical results indicate that the load-sharing coefficients can reach up to 1.2-1.3. A simulated experimental platform of the multiple pinions driving is carried out and the torque distributions under the step load in driving shaft of pinions are measured. The imbalance of torque distribution of pinions is verified and the load-sharing coefficients in each pinion can reach 1.262. The results of simulation and test are similar, which shows the correctness of theoretical model. A loop coupling control method is put forward based on current torque master slave control method. The imbalance of the multiple pinions driving in cutter head driving system of tunneling boring machine can be greatly decreased and the load-sharing coefficients can be reduced to 1.051 by using the loop coupling control method. The proposed research provides an effective solution to the imbalance of torque distribution and synchronous control method for multiple pinions driving of TBM.展开更多
Tunnel boring machine(TBM) vibration induced by cutting complex ground contains essential information that can help engineers evaluate the interaction between a cutterhead and the ground itself.In this study,deep recu...Tunnel boring machine(TBM) vibration induced by cutting complex ground contains essential information that can help engineers evaluate the interaction between a cutterhead and the ground itself.In this study,deep recurrent neural networks(RNNs) and convolutional neural networks(CNNs) were used for vibration-based working face ground identification.First,field monitoring was conducted to obtain the TBM vibration data when tunneling in changing geological conditions,including mixed-face,homogeneous,and transmission ground.Next,RNNs and CNNs were utilized to develop vibration-based prediction models,which were then validated using the testing dataset.The accuracy of the long short-term memory(LSTM) and bidirectional LSTM(Bi-LSTM) models was approximately 70% with raw data;however,with instantaneous frequency transmission,the accuracy increased to approximately 80%.Two types of deep CNNs,GoogLeNet and ResNet,were trained and tested with time-frequency scalar diagrams from continuous wavelet transformation.The CNN models,with an accuracy greater than 96%,performed significantly better than the RNN models.The ResNet-18,with an accuracy of 98.28%,performed the best.When the sample length was set as the cutterhead rotation period,the deep CNN and RNN models achieved the highest accuracy while the proposed deep CNN model simultaneously achieved high prediction accuracy and feedback efficiency.The proposed model could promptly identify the ground conditions at the working face without stopping the normal tunneling process,and the TBM working parameters could be adjusted and optimized in a timely manner based on the predicted results.展开更多
Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented...Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process.展开更多
This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project sche...This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project scheduling in tunnelling and underground projects in a rock environment.For this purpose,a sum of 185 datasets was collected from the literature and used to predict the ROP of TBM.Initially,the main dataset was utilised to construct and validate four conventional soft computing(CSC)models,i.e.minimax probability machine regression,relevance vector machine,extreme learning machine,and functional network.Consequently,the estimated outputs of CSC models were united and trained using an artificial neural network(ANN) to construct a hybrid ensemble model(HENSM).The outcomes of the proposed HENSM are superior to other CSC models employed in this study.Based on the experimental results(training RMSE=0.0283 and testing RMSE=0.0418),the newly proposed HENSM is potential to assist engineers in predicting ROP of TBM in the design phase of tunnelling and underground projects.展开更多
文摘Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.
文摘Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where TBMs are increasingly large in diameter and shallow in depth.In response to this problem,four experimental campaigns were carried out in different geotechnical contexts in France.The vibration measurements were acquired on the surface and inside the TBMs.These measurements are also complemented by few data in the literature.An original methodology of signal processing is pro-posed to characterize the amplitude of the particle velocities,as well as the frequency content of the signals to highlight the most energetic bands.The levels of vibrations are also compared with the thresholds existing in various European regulations concerning the impact on neighbouring structures and the disturbance to local residents.
基金National Natural Science Foundation of China (Grant No.52178393)the Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan (Grant No.2020TD005)Science and Technology Innovation Project of China Railway Construction Bridge Engineering Bureau Group Co.,Ltd.(Grant No.DQJ-2020-B07)。
文摘Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel.
基金supported by National Natural Science Foundation of China (Grant No. 51075147)
文摘At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutterhead gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased.
基金China Atomic Energy Authority is thanked for its financial support for this project.The authors would like to acknowledge China Railway Engineering Equipment Group Co.,Ltd.,China Railway Construction Heavy Industry Co.,Ltd.,Herrenknecht AG,China Railway 18th Bureau Group Co.,Ltd.,China Railway Tunnel Group Co.,Ltd.,and Liaoning Censcience Industry Co.,Ltd.for their technical support on this research.The valuable comments by two reviewers are appreciated as well.
文摘Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for China’s first URL,named Beishan URL.For this,a preliminary design of the Beishan URL has been proposed,including one spiral ramp,three shafts and two experimental levels.With advantages of fast advancing and limited disturbance to surrounding rock mass,the tunnel boring machine(TBM)method could be one of the excavation methods considered for the URL ramp.This paper introduces the feasibility study on using TBM to excavation of the Beishan URL ramp.The technical challenges for using TBM in Beishan URL are identified on the base of geological condition and specific layout of the spiral ramp.Then,the technical feasibility study on the specific issues,i.e.extremely hard rock mass,high abrasiveness,TBM operation,muck transportation,water drainage and material transportation,is investigated.This study demonstrates that TBM technology is a feasible method for the Beishan URL excavation.The results can also provide a reference for the design and construction of HLW disposal engineering in similar geological conditions.2020 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
基金supported by the National Natural Science Foundation of China(Grant Nos.41772309 and 51908431)the Outstanding Youth Foundation of Hubei Province,China(Grant No.2019CFA074)。
文摘Real-time perception of rock mass information is of great importance to efficient tunneling and hazard prevention in tunnel boring machines(TBMs).In this study,a TBM-rock mutual feedback perception method based on data mining(DM) is proposed,which takes 10 tunneling parameters related to surrounding rock conditions as input features.For implementation,first,the database of TBM tunneling parameters was established,in which 10,807 tunneling cycles from the Songhua River water conveyance tunnel were accommodated.Then,the spectral clustering(SC) algorithm based on graph theory was introduced to cluster the TBM tunneling data.According to the clustering results and rock mass boreability index,the rock mass conditions were classified into four classes,and the reasonable distribution intervals of the main tunneling parameters corresponding to each class were presented.Meanwhile,based on the deep neural network(DNN),the real-time prediction model regarding different rock conditions was established.Finally,the rationality and adaptability of the proposed method were validated via analyzing the tunneling specific energy,feature importance,and training dataset size.The proposed TBM-rock mutual feedback perception method enables the automatic identification of rock mass conditions and the dynamic adjustment of tunneling parameters during TBM driving.Furthermore,in terms of the prediction performance,the method can predict the rock mass conditions ahead of the tunnel face in real time more accurately than the traditional machine learning prediction methods.
基金supported by National Basic Research Program of China(973 Program, Grant No. 2013CB035402)
文摘The failure of the key parts, such as gears, in cutter head driving system of tunneling boring machine has not been properly solved under the interaction of driving motors asynchronously and wave tunneling torque load. A dynamic model of multi-gear driving system is established considering the inertia effects of driving mechanism and cutter head as well as the bending-torsional coupling. By taking into account the nonlinear coupling factors between ring gear and multiple pinions, the influence for meshing angle by bending-torsional coupling and the dynamic load-sharing characteristic of multiple pinions driving are analyzed. Load-sharing coefficients at different rotating cutter head speeds and input torques are presented. Numerical results indicate that the load-sharing coefficients can reach up to 1.2-1.3. A simulated experimental platform of the multiple pinions driving is carried out and the torque distributions under the step load in driving shaft of pinions are measured. The imbalance of torque distribution of pinions is verified and the load-sharing coefficients in each pinion can reach 1.262. The results of simulation and test are similar, which shows the correctness of theoretical model. A loop coupling control method is put forward based on current torque master slave control method. The imbalance of the multiple pinions driving in cutter head driving system of tunneling boring machine can be greatly decreased and the load-sharing coefficients can be reduced to 1.051 by using the loop coupling control method. The proposed research provides an effective solution to the imbalance of torque distribution and synchronous control method for multiple pinions driving of TBM.
基金supported by the National Natural Science Foundation of China(Grant No.52090082)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020ME243)the Shanghai Committee of Science and Technology(Grant No.19511100802)。
文摘Tunnel boring machine(TBM) vibration induced by cutting complex ground contains essential information that can help engineers evaluate the interaction between a cutterhead and the ground itself.In this study,deep recurrent neural networks(RNNs) and convolutional neural networks(CNNs) were used for vibration-based working face ground identification.First,field monitoring was conducted to obtain the TBM vibration data when tunneling in changing geological conditions,including mixed-face,homogeneous,and transmission ground.Next,RNNs and CNNs were utilized to develop vibration-based prediction models,which were then validated using the testing dataset.The accuracy of the long short-term memory(LSTM) and bidirectional LSTM(Bi-LSTM) models was approximately 70% with raw data;however,with instantaneous frequency transmission,the accuracy increased to approximately 80%.Two types of deep CNNs,GoogLeNet and ResNet,were trained and tested with time-frequency scalar diagrams from continuous wavelet transformation.The CNN models,with an accuracy greater than 96%,performed significantly better than the RNN models.The ResNet-18,with an accuracy of 98.28%,performed the best.When the sample length was set as the cutterhead rotation period,the deep CNN and RNN models achieved the highest accuracy while the proposed deep CNN model simultaneously achieved high prediction accuracy and feedback efficiency.The proposed model could promptly identify the ground conditions at the working face without stopping the normal tunneling process,and the TBM working parameters could be adjusted and optimized in a timely manner based on the predicted results.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 52074258, 41941018, and U21A20153)
文摘Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process.
文摘This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration(ROP) of tunnel boring machine(TBM),which is becoming a prerequisite for reliable cost assessment and project scheduling in tunnelling and underground projects in a rock environment.For this purpose,a sum of 185 datasets was collected from the literature and used to predict the ROP of TBM.Initially,the main dataset was utilised to construct and validate four conventional soft computing(CSC)models,i.e.minimax probability machine regression,relevance vector machine,extreme learning machine,and functional network.Consequently,the estimated outputs of CSC models were united and trained using an artificial neural network(ANN) to construct a hybrid ensemble model(HENSM).The outcomes of the proposed HENSM are superior to other CSC models employed in this study.Based on the experimental results(training RMSE=0.0283 and testing RMSE=0.0418),the newly proposed HENSM is potential to assist engineers in predicting ROP of TBM in the design phase of tunnelling and underground projects.