Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl...Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.展开更多
This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NR...This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams.展开更多
Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectio...Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade.展开更多
This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two c...This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two categories: inflow turbulence and airfoil self-noise. The base model and retrofit blade designs were modeled in SolidWorks. Subsequently, noise prediction simulations were conducted and compared to the base blade model to determine which modification provided the greatest benefit using SolidWorks Flow Simulation. The result of this project is a series of blade retrofit recommendations that produce a more acoustically efficient design and reduce noise complaints while enabling turbines to be placed in locations that require quieter operations.展开更多
Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results sho...Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.展开更多
In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testin...In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading.展开更多
Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue...Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue testingmachine for electromagnetic excitation is designed,and the following strategy of the actual load and the target load is studied.A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic(Fuzzy FTRLS)is proposed to develop a fatigue loading following dynamic strategy,which adjusts the forgetting factor in the algorithmthrough fuzzy logic to overcome the contradiction between convergence accuracy and convergence speed and solve the phenomenon of amplitude overshoot and phase lag of the actual load relative to the target load.Combined with the previous research results,a simulation model was constructed to verify the strategy’s effectiveness.Field tests were carried out to verify its follow-up effect.The results showthat the tracking error of flapwise and edgewise direction iswithin 4%,which has better robustness and dynamic and static performance than the traditional Recursive Least Squares(RLS)algorithm.展开更多
The increasing size of these blades of wind turbines emphasizes the need for reliable monitoring and maintenance.This brief review explores the detection and analysis of damage in wind turbine blades.The study highlig...The increasing size of these blades of wind turbines emphasizes the need for reliable monitoring and maintenance.This brief review explores the detection and analysis of damage in wind turbine blades.The study highlights various techniques,including acoustic emission analysis,strain signal monitoring,and vibration analysis,as effective approaches for damage detection.Vibration analysis,in particular,shows promise for fault identification by analyzing changes in dynamic characteristics.Damage indices based on modal properties,such as natural frequencies,mode shapes,and curvature,are discussed.展开更多
In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile desig...In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.展开更多
The three-dimensional solidification simulation of the investment castings of single crystal hollow turbine blade at the withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min has been performed with the finite element...The three-dimensional solidification simulation of the investment castings of single crystal hollow turbine blade at the withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min has been performed with the finite element thermal analysis. The calculated results are in accordance with the experimental ones. The results show that with the increase of withdrawal rate the concave curvature of the liquidus isotherm is larger and larger, and the temperature gradients of the blades increase. No effects of withdrawal rate on the distribution of the temperature gradients of the starter and helical grain selector of the blades are observed at withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min. The relatively high temperature gradient between 500℃/cm and 1000℃/cm in the starter and helical grain selector is obtained at three withdrawal rates.展开更多
The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which compris...The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter.展开更多
The directional solidification process of turbine blade sample castings was investigated in the work. Variable withdrawal rates were used in one withdrawal process and compared with the other using uniform rate. A mat...The directional solidification process of turbine blade sample castings was investigated in the work. Variable withdrawal rates were used in one withdrawal process and compared with the other using uniform rate. A mathematical model for heat radiation transfer and microstructure simulation of directional solidification process was developed based on CA-FD method. The temperature distribution and microstructure w.ere simulated and compared with the experimental results. The stray grains were predicted and compared with the experimental results. The uneven temperature distribution of platform was the main reason of the formation of stray grains.展开更多
Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbin...Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,camera calibration,distortion correction,the semi-automatic high-precision extraction of targets,coordinate systems unification,and bundle adjustment,etc. The relatively convenient construction method of the measuring system can provide an abundant measuring content,a wide measuring range and post processing.The experimental results show that the accuracy of the integral deformation measurement is higher than 0.5 mm and that of the buckling deformation measurement higher than 0.1mm.展开更多
A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix...A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory(BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions,are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, Ibeam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer(CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically.展开更多
A turbine blade is one of the key components of the aero-engine. Its geometric shape should be inspected carefully in the production stage to ensure that it meets the tolerance specification. In the present paper, an ...A turbine blade is one of the key components of the aero-engine. Its geometric shape should be inspected carefully in the production stage to ensure that it meets the tolerance specification. In the present paper, an approach for investment turbine blade geometric shape analysis based on multi-source digital measurement is presented. Its key technologies, such as measurement data collection, blade model reliable alignment, geometric shape deviation fast calculation and visualization, were investigated. Actual measurement data from a structure light measurement device and a Coordinate Measuring Machine(CMM) for turbine blades were used to validate the presented method. The experimental results show that the proposed method is accurate, quick and effective to implement.展开更多
Numerical heat-transfer and turbulent flow model for an industrial high-pressure gas quenching vacuum furnace was established to simulate the heating,holding and gas fan quenching of a low rhenium-bearing Ni-based sin...Numerical heat-transfer and turbulent flow model for an industrial high-pressure gas quenching vacuum furnace was established to simulate the heating,holding and gas fan quenching of a low rhenium-bearing Ni-based single crystal turbine blade.The mesh of simplified furnace model was built using finite volume method and the boundary conditions were set up according to the practical process.Simulation results show that the turbine blade geometry and the mutual shielding among blades have significant influence on the uniformity of the temperature distribution.The temperature distribution at sharp corner,thin wall and corner part is higher than that at thick wall part of blade during heating,and the isotherms show a toroidal line to the center of thick wall.The temperature of sheltered units is lower than that of the remaining part of blade.When there is no shelteration among multiple blades,the temperature distribution for all blades is almost identical.The fluid velocity field,temperature field and cooling curves of the single and multiple turbine blades during gas fan quenching were also simulated.Modeling results indicate that the loading tray,free outlet and the location of turbine blades have important influences on the flow field.The high-speed gas flows out from the nozzle is divided by loading tray,and the free outlet enhanced the two vortex flow at the end of the furnace door.The closer the blade is to the exhaust outlet and the nozzle,the greater the flow velocity is and the more adequate the flow is.The blade geometry has an effect on the cooling for single blade and multiple blades during gas fan quenching,and the effects in double layers differs from that in single layer.For single blade,the cooing rate at thin-walled part is lower than that at thick-walled part,the cooling rate at sharp corner is greater than that at tenon and blade platform,and the temperature at regions close to the internal position is decreased more slowly than that close to the surface.For multiple blades in single layer,the temperature at sharp corner or thin wall in the blade that close to the nozzles is much lower,and the temperature distribution of blades is almost parallel.The cooling rate inside the air current channel is lower than that of at the position near blade platform and tenon,and the effect of blade location to the nozzles on the temperature field inside the blade is lower than that on the blade surface.For multiple blades in double layers,the flow velocity is low,and the flow is not uniform for blades in the second-layer due to the shielding of blades in the first-layer.the cooling rate of blades in the second-layer is lower than that in the first-layer.The cooling rate of blade close to the nozzles in the first-layer is the higher than that of blade away from the nozzles in the second-layer,and the temperature distribution on blades in the same layer is almost parallel.The cooling rate in thin wall position of blade away from the nozzles is larger than that in tenon of the blade closer to the nozzles in the same layer.The cooling rate for blades in the secondlayer is much lower both in thin wall and tenon for blades away from the nozzles.展开更多
Based on feature modeling and mathematical analysis methods,a process-oriented and modular parametric design system for advanced turbine cooling blade is developed with UG API,aiming at the structural complexity and h...Based on feature modeling and mathematical analysis methods,a process-oriented and modular parametric design system for advanced turbine cooling blade is developed with UG API,aiming at the structural complexity and high design difficulty of aero-engine cooling turbine blade.The relationship between the external and internal body features,the body attached feature is analyzed as viewed from the feature and parameter terms.The parametric design processes and design examples of the external body shape,tenon,platform and internal body shape,ribs,pin fins are introduced.The system improves the design efficiency of cooling turbine blade and establishes the foundation of multidisciplinary design optimization procedure for it.展开更多
As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeli...As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeling and simulation technology can help to optimize the manufacturing process of SX blades.Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification(DS)process.Coupled with heat transfer(macroscale)and grain growth(meso-scale),3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale.SX grain selection behavior was studied by the simulation and experiments.The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness.Based on the coupled models,heat transfer,grain growth and microstructure evolution of a complex hollow SX blade were simulated.Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process.In order to avoid the formation of the stray crystal,the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade.The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains,which was also proved by the experiments.展开更多
Electric and magnetic fields generated by lightning cause a serious hazard to various systems.Now wind turbine installations with higher power capacity are increasing.Higher power capacity requires higher height and s...Electric and magnetic fields generated by lightning cause a serious hazard to various systems.Now wind turbine installations with higher power capacity are increasing.Higher power capacity requires higher height and so there is more probability of lightning strike.Blades are the most probable components to be struck by lightning.The most common lightning protection system for the blades consists of several metallic receptors on the blade surface.Those are connected to the ground by metallic down-conductors placed inside the blade shell.This paper studies effects of the receptor configurations on protecting the blade against lightning strike.For this purpose,an analysis procedure based on finite element method(FEM)in COMSOL Multiphysics software environment is used.The voltage distribution around the blade is simulated for various configurations of receptors.The best configuration is presented.Simulations are performed on the blade model of a special wind turbine,which isVESTAS V47".展开更多
基金supported by the University Outstanding Youth Researcher Support Program of the Education Department of Anhui Province,the National Natural Science Foundation of China(Grant Nos.11902002 and 51705002)the Sichuan Provincial Natural Science Foundation(Grant No.2022NSFSC0275)+1 种基金the Science and Technology Research Project of Chongqing Municipal Education Commission(Grant No.KJQN201901146)the Special Key Project of Technological Innovation and Application Development in Chongqing(Grant No.cstc2020jscx-dxwtBX0048).
文摘Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.
基金supported by the National Natural Science Foundation of China(No.51965034).
文摘This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams.
基金the Science and Technology Programs of Gansu Province(Grant Nos.21JR1RA248,23YFGA0050)the Young Scholars Science Foundation of Lanzhou Jiaotong University(Grant Nos.2020039,2020017)+2 种基金the Special Funds for Guiding Local Scientific and Technological Development by the Central Government(Grant No.22ZY1QA005)the National Natural Science Foundation of China(Grant No.72361019)the Gansu Provincial Outstanding Graduate Students Innovation Star Program(Grant No.2023CXZX-574).
文摘Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade.
文摘This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two categories: inflow turbulence and airfoil self-noise. The base model and retrofit blade designs were modeled in SolidWorks. Subsequently, noise prediction simulations were conducted and compared to the base blade model to determine which modification provided the greatest benefit using SolidWorks Flow Simulation. The result of this project is a series of blade retrofit recommendations that produce a more acoustically efficient design and reduce noise complaints while enabling turbines to be placed in locations that require quieter operations.
基金supported by the National Science and Technology Major Project(J2019-IV-0003-0070)the National Natural Science Foundation of China(Grant No.12102320)+1 种基金the Advanced Aviation Power Innovation Workstation Project(HKCX2019-01-003)China Postdoc-toral Science Foundation(2021M692571).
文摘Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.
基金supported by the Science and Technology Programs of Gansu Province,China(Nos.21JR1RA248,20JR10RA264)the Young Scholars Science Foundation of Lanzhou Jiaotong University,China(Nos.2020039,2020017)the Special Funds for Guiding Local Scientific and Technological Development by the Central Government,China(No.22ZY1QA005)。
文摘In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading.
基金funded by the National Natural Science Foundation of China (Grant Number 52075305).
文摘Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue testingmachine for electromagnetic excitation is designed,and the following strategy of the actual load and the target load is studied.A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic(Fuzzy FTRLS)is proposed to develop a fatigue loading following dynamic strategy,which adjusts the forgetting factor in the algorithmthrough fuzzy logic to overcome the contradiction between convergence accuracy and convergence speed and solve the phenomenon of amplitude overshoot and phase lag of the actual load relative to the target load.Combined with the previous research results,a simulation model was constructed to verify the strategy’s effectiveness.Field tests were carried out to verify its follow-up effect.The results showthat the tracking error of flapwise and edgewise direction iswithin 4%,which has better robustness and dynamic and static performance than the traditional Recursive Least Squares(RLS)algorithm.
文摘The increasing size of these blades of wind turbines emphasizes the need for reliable monitoring and maintenance.This brief review explores the detection and analysis of damage in wind turbine blades.The study highlights various techniques,including acoustic emission analysis,strain signal monitoring,and vibration analysis,as effective approaches for damage detection.Vibration analysis,in particular,shows promise for fault identification by analyzing changes in dynamic characteristics.Damage indices based on modal properties,such as natural frequencies,mode shapes,and curvature,are discussed.
基金Project (2008ZE53042) supported by National Aerospace Science Foundation of China
文摘In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.
文摘The three-dimensional solidification simulation of the investment castings of single crystal hollow turbine blade at the withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min has been performed with the finite element thermal analysis. The calculated results are in accordance with the experimental ones. The results show that with the increase of withdrawal rate the concave curvature of the liquidus isotherm is larger and larger, and the temperature gradients of the blades increase. No effects of withdrawal rate on the distribution of the temperature gradients of the starter and helical grain selector of the blades are observed at withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min. The relatively high temperature gradient between 500℃/cm and 1000℃/cm in the starter and helical grain selector is obtained at three withdrawal rates.
基金Project(2015B37714)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(51605005)supported by the National Natural Science Foundation of China+1 种基金Project(ZK16-03-03)supported by the Open Foundation of Jiangsu Wind Technology Center,ChinaProject([2013]56)supported by the First Group of 2011 Plan of Jiangsu Province,China
文摘The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter.
文摘The directional solidification process of turbine blade sample castings was investigated in the work. Variable withdrawal rates were used in one withdrawal process and compared with the other using uniform rate. A mathematical model for heat radiation transfer and microstructure simulation of directional solidification process was developed based on CA-FD method. The temperature distribution and microstructure w.ere simulated and compared with the experimental results. The stray grains were predicted and compared with the experimental results. The uneven temperature distribution of platform was the main reason of the formation of stray grains.
文摘Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,camera calibration,distortion correction,the semi-automatic high-precision extraction of targets,coordinate systems unification,and bundle adjustment,etc. The relatively convenient construction method of the measuring system can provide an abundant measuring content,a wide measuring range and post processing.The experimental results show that the accuracy of the integral deformation measurement is higher than 0.5 mm and that of the buckling deformation measurement higher than 0.1mm.
基金financially supported by the Marine Renewable Energy Research Project of State Oceanic Administration of China(Grant No.GHME2013GC03)
文摘A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory(BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions,are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, Ibeam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer(CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically.
基金financially supported by the Major National S&T Project(No.2012ZX04007021)Doctoral fund of China(No.2013YD050008)
文摘A turbine blade is one of the key components of the aero-engine. Its geometric shape should be inspected carefully in the production stage to ensure that it meets the tolerance specification. In the present paper, an approach for investment turbine blade geometric shape analysis based on multi-source digital measurement is presented. Its key technologies, such as measurement data collection, blade model reliable alignment, geometric shape deviation fast calculation and visualization, were investigated. Actual measurement data from a structure light measurement device and a Coordinate Measuring Machine(CMM) for turbine blades were used to validate the presented method. The experimental results show that the proposed method is accurate, quick and effective to implement.
基金financially supported by the National Natural Science Foundation of China(grant nos.51374137 and 51171089)National Science and Technology Major Special Project of China(grant no.2012ZX04012-011)National Basic Research Program of China(grant no.2011CB706801)
文摘Numerical heat-transfer and turbulent flow model for an industrial high-pressure gas quenching vacuum furnace was established to simulate the heating,holding and gas fan quenching of a low rhenium-bearing Ni-based single crystal turbine blade.The mesh of simplified furnace model was built using finite volume method and the boundary conditions were set up according to the practical process.Simulation results show that the turbine blade geometry and the mutual shielding among blades have significant influence on the uniformity of the temperature distribution.The temperature distribution at sharp corner,thin wall and corner part is higher than that at thick wall part of blade during heating,and the isotherms show a toroidal line to the center of thick wall.The temperature of sheltered units is lower than that of the remaining part of blade.When there is no shelteration among multiple blades,the temperature distribution for all blades is almost identical.The fluid velocity field,temperature field and cooling curves of the single and multiple turbine blades during gas fan quenching were also simulated.Modeling results indicate that the loading tray,free outlet and the location of turbine blades have important influences on the flow field.The high-speed gas flows out from the nozzle is divided by loading tray,and the free outlet enhanced the two vortex flow at the end of the furnace door.The closer the blade is to the exhaust outlet and the nozzle,the greater the flow velocity is and the more adequate the flow is.The blade geometry has an effect on the cooling for single blade and multiple blades during gas fan quenching,and the effects in double layers differs from that in single layer.For single blade,the cooing rate at thin-walled part is lower than that at thick-walled part,the cooling rate at sharp corner is greater than that at tenon and blade platform,and the temperature at regions close to the internal position is decreased more slowly than that close to the surface.For multiple blades in single layer,the temperature at sharp corner or thin wall in the blade that close to the nozzles is much lower,and the temperature distribution of blades is almost parallel.The cooling rate inside the air current channel is lower than that of at the position near blade platform and tenon,and the effect of blade location to the nozzles on the temperature field inside the blade is lower than that on the blade surface.For multiple blades in double layers,the flow velocity is low,and the flow is not uniform for blades in the second-layer due to the shielding of blades in the first-layer.the cooling rate of blades in the second-layer is lower than that in the first-layer.The cooling rate of blade close to the nozzles in the first-layer is the higher than that of blade away from the nozzles in the second-layer,and the temperature distribution on blades in the same layer is almost parallel.The cooling rate in thin wall position of blade away from the nozzles is larger than that in tenon of the blade closer to the nozzles in the same layer.The cooling rate for blades in the secondlayer is much lower both in thin wall and tenon for blades away from the nozzles.
文摘Based on feature modeling and mathematical analysis methods,a process-oriented and modular parametric design system for advanced turbine cooling blade is developed with UG API,aiming at the structural complexity and high design difficulty of aero-engine cooling turbine blade.The relationship between the external and internal body features,the body attached feature is analyzed as viewed from the feature and parameter terms.The parametric design processes and design examples of the external body shape,tenon,platform and internal body shape,ribs,pin fins are introduced.The system improves the design efficiency of cooling turbine blade and establishes the foundation of multidisciplinary design optimization procedure for it.
基金supported by the National Basic Research Program of China(No.2011CB706801)the National Natural Science Foundation of China(Nos.51171089 and 51374137)the National Science and Technology Major Project(Nos.2011ZX04014-052 and 2012ZX04012-011)
文摘As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeling and simulation technology can help to optimize the manufacturing process of SX blades.Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification(DS)process.Coupled with heat transfer(macroscale)and grain growth(meso-scale),3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale.SX grain selection behavior was studied by the simulation and experiments.The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness.Based on the coupled models,heat transfer,grain growth and microstructure evolution of a complex hollow SX blade were simulated.Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process.In order to avoid the formation of the stray crystal,the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade.The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains,which was also proved by the experiments.
文摘Electric and magnetic fields generated by lightning cause a serious hazard to various systems.Now wind turbine installations with higher power capacity are increasing.Higher power capacity requires higher height and so there is more probability of lightning strike.Blades are the most probable components to be struck by lightning.The most common lightning protection system for the blades consists of several metallic receptors on the blade surface.Those are connected to the ground by metallic down-conductors placed inside the blade shell.This paper studies effects of the receptor configurations on protecting the blade against lightning strike.For this purpose,an analysis procedure based on finite element method(FEM)in COMSOL Multiphysics software environment is used.The voltage distribution around the blade is simulated for various configurations of receptors.The best configuration is presented.Simulations are performed on the blade model of a special wind turbine,which isVESTAS V47".