期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Computational Investigation of Blade slotting on a High-Load Low-Pressure Turbine Profile at various Reynolds Numbers:Part Ⅰ——Slotting Scheme's Verification 被引量:3
1
作者 Qiang Du Junqiang Zhu +1 位作者 Min Zhou Wei Li 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第1期13-20,共8页
Boundary layer separation and reattachment is often an unavoidable feature of low pressure (LP) turbine,one of the main causes of this phenomenon is the high altitude low Reynolds number experienced by the modern LP t... Boundary layer separation and reattachment is often an unavoidable feature of low pressure (LP) turbine,one of the main causes of this phenomenon is the high altitude low Reynolds number experienced by the modern LP turbine stage in aero-engine.Although an excellent turbine airfoil design can avoid flow separation on certain extent,but within flight envelope,LP turbine's characteristic Reynolds number may varied greatly,so it will be still under the risk of the presence of separation bubble.In this two parts paper a new concept of slotted-blade was raised to testify the gain of the blade slotting.A high aerodynamic loading LP turbine blade IET-LPTA was under investigated with different Reynolds number.Computational results reveal that the blade slotting could be a way of choice to suppress separation bubble and reduce profile loss under the condition of low Reynolds number,although its position and geometry need to be further investigated. 展开更多
关键词 Boundary layer separation and reattachment High aerodynamic loading lp turbine blade Slotted-blade
原文传递
Heat Transfer and Aerodynamics of Complex Shroud Leakage Flows in a Low-Pressure Turbine 被引量:1
2
作者 Wang Pei Du Qiang +1 位作者 Yang Xiao Jie Zhu Jun Qiang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第5期447-458,共12页
A numerical investigation on over-shroud & inter-shroud leakage flow has been carried out to explore the underneath flow physics at the stage of shrouded Low Pressure(LP) turbine.Compared with the No inter-Shroud ... A numerical investigation on over-shroud & inter-shroud leakage flow has been carried out to explore the underneath flow physics at the stage of shrouded Low Pressure(LP) turbine.Compared with the No inter-Shroud gap's Leakage flow Model(NSLM) and With inter-Shroud gap's Leakage flow Model(WSLM),the aerodynamic characteristics and the heat transfer performance have been studied.Through the aerodynamic point of view,it is concluded that due to the pressure difference between the rotor's passage and the over-shroud cavity,in the stream-wise direction,flow structure has been modified,and the inter-shroud leakage flow may even cause flow separation in the vicinity of the blade passage's throat.In the circumferential direction,separation flows appear over the rotor's shroud surface(upper platform of the shroud).Meanwhile,from the point of view of heat transfer,further provision on contour maps of the non-dimensional Nusselt number reveals that the reattachment of leakage flow would enhance the heat transfer rates and endanger the rotor's labyrinth fins over the shroud.However,due to the limited amount of inter-shroud leakage flow(current computational model),temperature distribution variation along the blade surface(near the rotor's tip section) seems to have only minor insignificant differences.At the end of the paper,the author puts forward some recommendations for the purpose of future successful turbine design. 展开更多
关键词 over-shroud leakage flow inter-shroud leakage flow shrouded lp turbine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部