期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Nonlinear Flap-Wise Vibration Characteristics ofWind Turbine Blades Based onMulti-Scale AnalysisMethod
1
作者 Qifa Lang Yuqiao Zheng +2 位作者 Tiancai Cui Chenglong Shi Heyu Zhang 《Energy Engineering》 EI 2024年第2期483-498,共16页
This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NR... This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams. 展开更多
关键词 Wind turbine blades nonlinear vibration Galerkin method multi-scales method
下载PDF
Stiffness Degradation Modeling for Composite Wind Turbine Blades Based on Full-Scale Fatigue Testing
2
作者 Haixia Kou Kongyuan Wei +1 位作者 Yanhu Liu Xuyao Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期517-528,共12页
In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testin... In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading. 展开更多
关键词 composite wind turbine blades fatigue damage stiffness degradation model full-scale fatigue testing
下载PDF
Thermal Analysis of Turbine Blades with Thermal Barrier Coatings Using Virtual Wall Thickness Method
3
作者 Linchuan Liu Jian Wu +4 位作者 Zhongwei Hu Xiaochao Jin Pin Lu Tao Zhang Xueling Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1219-1236,共18页
Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results sho... Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively. 展开更多
关键词 turbine blade thermal analysis thermal barrier coatings finite element method virtual wall thickness
下载PDF
Damage Identification of Wind Turbine Blades–A Brief Review
4
作者 Amna Algolfat Weizhuo Wang Alhussein Albarbar 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第3期198-206,共9页
The increasing size of these blades of wind turbines emphasizes the need for reliable monitoring and maintenance.This brief review explores the detection and analysis of damage in wind turbine blades.The study highlig... The increasing size of these blades of wind turbines emphasizes the need for reliable monitoring and maintenance.This brief review explores the detection and analysis of damage in wind turbine blades.The study highlights various techniques,including acoustic emission analysis,strain signal monitoring,and vibration analysis,as effective approaches for damage detection.Vibration analysis,in particular,shows promise for fault identification by analyzing changes in dynamic characteristics.Damage indices based on modal properties,such as natural frequencies,mode shapes,and curvature,are discussed. 展开更多
关键词 damage modeling digital twin vibration-based indices wind turbine blade
下载PDF
Videometric research on deformation measurement of large-scale wind turbine blades 被引量:5
5
作者 Xiangyi Sun,Yun Yuan,~(a))Zhaokun Zhu,Xiaohu Zhang,and Qifeng Yu College of Aerospace and Materials Engineering,National University of Defense Technology,Changsha 410073, Hunan,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第1期22-24,共3页
Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbin... Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,c... 展开更多
关键词 VIDEOMETRICS deformation measurement wind turbine blades LARGE-SCALE integral deformation buckling deformation
下载PDF
An Advanced Control Strategy for Dual-Actuator Driving System in Full-Scale Fatigue Test of Wind Turbine Blades
6
作者 Guanhua Wang Jinghua Wang +2 位作者 Xuemei Huang Leian Zhang Weisheng Liu 《Energy Engineering》 EI 2022年第4期1649-1662,共14页
A new dual-actuator fatigue loading system of wind turbine blades was designed.Compared with the traditional pendulum loading mode,the masses in this system only moved linearly along the loading direction to increase ... A new dual-actuator fatigue loading system of wind turbine blades was designed.Compared with the traditional pendulum loading mode,the masses in this system only moved linearly along the loading direction to increase the exciting force.However,the two actuators and the blade constituted a complicated non-linear energy transferring system,which led to the non-synchronization of actuators.On-site test results showed that the virtual spindle synchronous strategy commonly used in synchronous control was undesirable and caused the instability of the blade’s amplitude eventually.A cross-coupled control strategy based on the active disturbance rejection algorithm was proposed.Firstly,a control system model was built according to the synchronization error and tracking error.Furthermore,based on arranging the transition process,estimating the system state and error feedback,and compensating disturbance,an active disturbance rejection controller was designed by adopting the optimal control function.Finally,on-site test results showed that the cross-coupled control strategy based on the active disturbance rejection algorithm could ensure the synchronization of two actuators.The maximum speed synchronization error of the two motors was less than 16 RPM,the displacement synchronization error of the two actuators was less than 0.25 mm and approaching zero after 4 seconds,and the peak value of vibration of the blade was less than 5 mm,which satisfied the fatigue test requirement. 展开更多
关键词 Wind turbine blades full-scale fatigue test synchronous control cross-coupled control strategy active disturbance rejection control algorithm
下载PDF
Geometric analysis of investment casting turbine blades based on digital measurement data 被引量:4
7
作者 Cheng Yunyong Wang Liya +1 位作者 Zhu Zhenzhen Zhang Dinghua 《China Foundry》 SCIE CAS 2014年第1期20-27,共8页
A turbine blade is one of the key components of the aero-engine. Its geometric shape should be inspected carefully in the production stage to ensure that it meets the tolerance specification. In the present paper, an ... A turbine blade is one of the key components of the aero-engine. Its geometric shape should be inspected carefully in the production stage to ensure that it meets the tolerance specification. In the present paper, an approach for investment turbine blade geometric shape analysis based on multi-source digital measurement is presented. Its key technologies, such as measurement data collection, blade model reliable alignment, geometric shape deviation fast calculation and visualization, were investigated. Actual measurement data from a structure light measurement device and a Coordinate Measuring Machine(CMM) for turbine blades were used to validate the presented method. The experimental results show that the proposed method is accurate, quick and effective to implement. 展开更多
关键词 turbine blade shape inspection model reliable alignment deviation visualization
下载PDF
Research on the Deformation of Turbine Blades at Machining 被引量:2
8
作者 Masu Yamada Keiji Sonoya +1 位作者 Takahito Sobayashi Hiroshi Satoh 《Energy and Power Engineering》 2016年第1期1-12,共12页
Along with the recent expansion of demand for electricity, the production of steam turbine blades has increased, and various materials forged of 12Cr ferritic heat-resistant types of steel have become widely used for ... Along with the recent expansion of demand for electricity, the production of steam turbine blades has increased, and various materials forged of 12Cr ferritic heat-resistant types of steel have become widely used for this purpose. Although this material seems to be an excellent choice as heat-resistant steel, it requires a post-correction process for deformation after machining and thus lowers productivity. Therefore, we started basic experimental research, and through a series of tests, we found that 12Cr steel is a sticky material;the residual stresses after machining concentrate in the vicinity of the surface;and this influences the deformation of blades. 展开更多
关键词 turbine Blade MACHINING DEFORMATION 12Cr Steel
下载PDF
A Compact Laser Shearography System for On-Site Robotic Inspection of Wind Turbine Blades
9
作者 Zhiyao Li Mohammad Osman Tokhi +1 位作者 Zhanfang Zhao Haitao Zheng 《Journal of Artificial Intelligence and Technology》 2021年第3期166-173,共8页
Shearography is an optical technique in the field of nondestructive evaluation(NDE)of various materials.Its main advantages are that it is noncontact type and can cover a large area in a single inspection.As a result,... Shearography is an optical technique in the field of nondestructive evaluation(NDE)of various materials.Its main advantages are that it is noncontact type and can cover a large area in a single inspection.As a result,although it has been widely acknowledged as an effective technique particularly for NDE of composite materials to detect subsurface defects such as delamination,disbond,cracks,and impact damages,the use of shearography for on-site inspection of wind turbine blades(WTBs)has not been reported.This is due to wind causing structural vibration in the WTB.The solution in this paper is to make the shearography sit on the WTB during inspection when the WTB is parked,so that the relative motion between the shearography and the WTB is minimized within the tolerance of the shearography system.The ultimate goal of the solution is to enable a robot-assisted shearography system to inspect the WTB on-site.This paper presents the research work on a new shearography design for integration with a robotic climber for on-site WTB inspection.The approach is tested and evaluated in experimental settings,and a comparative assessment of the approach with other robotic NDE techniques is carried out.The results demonstrate the potential benefits and suitability of the approach for on-site robotic inspection of WTBs. 展开更多
关键词 SHEAROGRAPHY robotic climber DSSPI ESPI NDE wind turbine blade
下载PDF
Comparative Study on Different Methods for Prediction of Thermal Insulation Performance of Thermal Barrier Coating Used on Turbine Blades
10
作者 ZHANG Zhixin ZENG Wu +1 位作者 ZHANG Xiaodong ZENG Yuntao 《Journal of Thermal Science》 SCIE EI CSCD 2024年第1期172-189,共18页
As turbine inlet temperature gets higher and higher,thermal barrier coating(TBC) is more and more widely used in turbine blades.For turbine blades with TBC,it is of great significance to evaluate the temperature distr... As turbine inlet temperature gets higher and higher,thermal barrier coating(TBC) is more and more widely used in turbine blades.For turbine blades with TBC,it is of great significance to evaluate the temperature distribution of its substrate metal quickly and accurately,especially during the design stage.With different degrees of simplification such as whether to consider the change of the geometric size of the fluid domain by TBC and whether to consider the planar heat conduction in TBC,three different methods used in conjugate heat transfer(CHT) simulation to model the TBC of the turbine blades have been developed and widely used by researchers.However,little research has been conducted to investigate the influence of the three methods on the temperature distribution of turbine blade.To fill this gap,three geometric models were designed.They are a solid conduction model with a substrate metal layer and a TBC layer,a transonic turbine vane with internal cooling and TBC,and a plate cylindrical film hole cooling model with TBC.Different methods were used in these geometric models and their differences were carefully analyzed and discussed.The result shows that for the conduction model used in this paper,with the same TBC surface temperature distribution,the difference between the three methods is very small and can be ignored.For a transonic turbine vane with internal cooling,regarding the local maximum temperature of the substrate-TBC interface,the largest difference between the method in which TBC is considered as a thermal resistance or a virtual layer of cells and the method in which three-dimensional heat conduction equation of TBC is solved occurs at the trailing edge.The difference near the leading edge is below 2K.When employed to the film cooling model,the difference of the laterally averaged temperature of the substrate-TBC interface can be 8 K which is mainly due to the change of the length to diameter ratio of the film cooling hole by TBC.If the substrate thickness is reduced by the thickness of TBC when three-dimensional heat conduction equation of TBC is solved,the temperature difference between the three methods will be quite limited. 展开更多
关键词 turbine blade thermal barrier coating conjugate heat transfer film cooling hole
原文传递
Uncertainty analysis of measured geometric variations in turbine blades and impact on aerodynamic performance
11
作者 Xiaojing WANG Pengcheng DU +2 位作者 Lichao YAO Zhengping ZOU Fei ZENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期140-160,共21页
Inevitable geometric variations significantly affect the performance of turbines or even that of entire engines;thus,it is necessary to determine their actual characteristics and accurately estimate their impact on pe... Inevitable geometric variations significantly affect the performance of turbines or even that of entire engines;thus,it is necessary to determine their actual characteristics and accurately estimate their impact on performance.In this study,based on 1781 measured profiles of a typical turbine blade,the statistical characteristics of the geometric variations and the uncertainty impact are analyzed,and some commonly used uncertainty modelling methods based on Principal-Component Analysis(PCA)are verified.The geometric variations are found to be evident,asymmetric,and non-uniform,and the non-normality of the random distributions is non-negligible.The performance is notably affected,which is manifested as an overall offset,a notable scattering,and significant deterioration in several extreme cases.Additionally,it is demonstrated that the PCA reconstruction model is effective in characterizing major uncertainty characteristics of the geometric variations and their impact on the performance with almost the first 10 PCA modes.Based on a reasonable profile error and mean geometric deviation,the Gaussian assumption and stochasticprocess-based model are also found to be effective in predicting the mean values and standard deviations of the performance variations.However,they fail to predict the probability of some extreme cases with high loss.Finally,a Chi-square-based correction model is proposed to compensate for this deficiency.The present work can provide a useful reference for uncertainty analysis of the impact of geometric variations,and the corresponding uncertainty design of turbine blades. 展开更多
关键词 Aerodynamic performance Measured geometric variations Principal-component analysis turbine blade Uncertainty analysis
原文传递
Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade
12
作者 Haixia Kou Bowen Yang +2 位作者 Xuyao Zhang Xiaobo Yang Haibo Zhao 《Structural Durability & Health Monitoring》 EI 2024年第3期277-297,共21页
Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectio... Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade. 展开更多
关键词 Composite laminate wind turbine blade sub-structure progressive damage analysis user material subroutine cohesive zone model
下载PDF
An experimental investigation on the trailing edge cooling of turbine blades 被引量:5
13
作者 Zifeng Yang Hui Hun 《Propulsion and Power Research》 SCIE 2012年第1期36-47,共12页
An experimental study was conducted to quantify the flow characteristics of the wall jets pertinent to trailing edge cooling of turbine blades.A high-resolution stereoscopic particle image velocimetry(PIV)system was u... An experimental study was conducted to quantify the flow characteristics of the wall jets pertinent to trailing edge cooling of turbine blades.A high-resolution stereoscopic particle image velocimetry(PIV)system was used to conduct detailed flow field measurements to quantitatively visualize the evolution of the unsteady vortices and turbulent flow structures in the cooling wall jet streams and to quantify the dynamic mixing process between the cooling jet stream and the mainstream flows.The detailed flow field measurements were correlated with the adiabatic cooling effectiveness maps measured by using pressure sensitive paint(PSP)technique to elucidate underlying physics in order to explore/optimize design paradigms for improved cooling effectiveness to protect the critical portions of turbine blades from harsh environments. 展开更多
关键词 Trailing edge cooling Wall slot jets turbine blades Steroscopic particle image velocimetry(PIV)measurements Pressure sensitive paint(PSP)technique
原文传递
Research on the Follow-Up Control Strategy of Biaxial Fatigue Test of Wind Turbine Blade Based on Electromagnetic Excitation
14
作者 Wenzhe Guo Leian Zhang +2 位作者 Chao Lv Weisheng Liu Jiabin Tian 《Energy Engineering》 EI 2023年第10期2307-2323,共17页
Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue... Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue testingmachine for electromagnetic excitation is designed,and the following strategy of the actual load and the target load is studied.A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic(Fuzzy FTRLS)is proposed to develop a fatigue loading following dynamic strategy,which adjusts the forgetting factor in the algorithmthrough fuzzy logic to overcome the contradiction between convergence accuracy and convergence speed and solve the phenomenon of amplitude overshoot and phase lag of the actual load relative to the target load.Combined with the previous research results,a simulation model was constructed to verify the strategy’s effectiveness.Field tests were carried out to verify its follow-up effect.The results showthat the tracking error of flapwise and edgewise direction iswithin 4%,which has better robustness and dynamic and static performance than the traditional Recursive Least Squares(RLS)algorithm. 展开更多
关键词 Wind turbine blades biaxial fatigue loading tracking control fuzzy FTRLS
下载PDF
A review of recent studies on rotating internal cooling for gas turbine blades 被引量:3
15
作者 Kirttayoth YERANEE Yu RAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第7期85-113,共29页
Gas turbines have been used extensively for aircraft and marine propulsions as well as land-based power generation because of their high thermal efficiency and large power to weight ratios.To further increase the ther... Gas turbines have been used extensively for aircraft and marine propulsions as well as land-based power generation because of their high thermal efficiency and large power to weight ratios.To further increase the thermal efficiency,numerous prior researches on gas turbine blade internal cooling have been intensively carried out,majorly under stationary conditions.However,the stationary studies neglect the effects of Coriolis and buoyancy forces,which should change the velocity,turbulence and temperature distribution under rotating conditions.To elucidate the rotational effects on gas turbine internal cooling,the extensive results collected from recent investigations are discussed,which include the rotation and buoyancy effects on the rib turbulated cooling,pin fin cooling,jet impingement cooling,dimple/protrusion cooling,latticework cooling as well as swirl cooling.The rotational effects on the friction factors and the most employed experimental and numerical methods are also presented.Moreover,recommendations for future research are outlined.Therefore,this review article provides extensive literature information for the design of the next-generation high-efficiency internal cooling for rotating turbine blades. 展开更多
关键词 Flow characteristics Gas turbine blade Heat transfer Internal cooling ROTATION
原文传递
Design Methods and Strategies for Forward and Inverse Problems of Turbine Blades Based on Machine Learning 被引量:2
16
作者 ZHOU Haimeng YU Kaituo +3 位作者 LUO Qiao LUO Lei DU Wei WANG Songtao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第1期82-95,共14页
To study the feasibility of using machine learning technology to solve the forward problem(prediction of aerodynamic parameters)and the inverse problem(prediction of geometric parameters)of turbine blades,this paper b... To study the feasibility of using machine learning technology to solve the forward problem(prediction of aerodynamic parameters)and the inverse problem(prediction of geometric parameters)of turbine blades,this paper built a forward problem model based on backpropagation artificial neural networks(BP-ANNs)and an inverse problem model based on radial basis function artificial neural networks(RBF-ANNs).The S2(a stream surface obtained by extending a radial curve in turbo blades)calculation program was used to generate the dataset for single-stage turbo blades,and the back propagation algorithm was used to train the model.The parameters of five blade sections in a single-stage turbine were selected as inputs of the forward problem model,including stagger angle,inlet geometric angle,outlet geometric angle,wedge angle of leading edge pressure side,wedge angle of leading edge suction side,wedge angle of trailing edge,rear bending angle,and leading edge diameter.The outputs are efficiency,power,mass flow,relative exit Mach number,absolute exit Mach number,relative exit flow angle,absolute exit flow angle and reaction degree,which are eight aerodynamic parameters.The inputs and outputs of the inverse problem model are the opposite of that of the forward problem model.The models can accurately predict the aerodynamic parameters and geometric parameters,and the mean square errors(MSEs)of the forward problem test set and the inverse problem test set are 0.001 and 0.00035,respectively.This study shows that machine learning technology based on neural networks can be flexibly applied to the design of forward and inverse problems of turbine blades,and the models built by this method have practical application value in regression prediction problems. 展开更多
关键词 turbine blade forward and inverse problem machine learning neural networks parameter prediction
原文传递
Multifunctional nanocomposite coating for wind turbine blades
17
作者 Fei Liang Jihua Gou +2 位作者 Jay Kapat Haichang Gu Gangbing Song 《International Journal of Smart and Nano Materials》 SCIE EI 2011年第3期120-133,共14页
In this study,multifunctional carbon nanofiber(CNF)paper-based nanocomposite coating was developed for wind turbine blades.The importance of vibration damping in relation to structural stability,dynamic response,posit... In this study,multifunctional carbon nanofiber(CNF)paper-based nanocomposite coating was developed for wind turbine blades.The importance of vibration damping in relation to structural stability,dynamic response,position control,and durability of wind turbine blades cannot be underestimated.The vibration damping properties of the nanocomposite blades were significantly improved and the damping ratio of the nanocomposite increased by 300%compared to the baseline composite.In addition,the CNF paper-based composite exhibited good impact-friction resistance,with a wear rate as low as 1.78×10^(−4)mm^(3)/Nm.The nanocomposite also shows the potential to improve the blockage of water from entering the nanocomposite,being a superhydrophobic material,with a contact angle higher than 160.0◦,which could improve the longevity of a wind turbine blade.Overall,multifunctional nanocomposite coating material shows great promise for usage with wind turbine blades,owing to its excellent damping properties,great friction resistance,and superhydrophobicity. 展开更多
关键词 multifunctionality NANOCOMPOSITE surface coating wind turbine blade
原文传递
In-service aircraft engines turbine blades life prediction based on multi-modal operation and maintenance data
18
作者 He Liu Jianzhong Sun +1 位作者 Shiying Lei Shungang Ning 《Propulsion and Power Research》 SCIE 2021年第4期360-373,共14页
The in-service life of turbine blades directly affects the on-wing lifetime and operating cost of aircraft engines.It would be essential to accurately evaluate the remaining useful life of turbine blades for safe engi... The in-service life of turbine blades directly affects the on-wing lifetime and operating cost of aircraft engines.It would be essential to accurately evaluate the remaining useful life of turbine blades for safe engine operation and reasonable maintenance decision-making.In this paper,a machine learning-based mechanism with multiple information fusion is proposed to predict the remaining useful life of high-pressure turbine blades.The developed method takes account of the in-service operating factors such as the high-pressure rotor speed and exhaust gas temperature,as well as the engine operating environments and performance degradation.The effectiveness of this method is demonstrated on simulated test cases generated by an integrated blade creep-life assessment model,which comprises engine performance,blade stress,thermal,and creep life estimation models.The results show that the proposed method provides a prospective result for in-service life evaluation of turbine blades and is of significance to evaluating the engine on-wing lifetime and making a reasonable maintenance plan. 展开更多
关键词 Multi-modal operating data fusion High pressure turbine blade Remaining useful life prediction Operating condition Creep life
原文传递
Discussion on Maintenance Cases of Wind Turbine Components
19
作者 Huang Ren-Jen 《Journal of Mechanics Engineering and Automation》 2023年第5期143-153,共11页
At present,the greenhouse effect is caused by excessive emission of carbon dioxide.As a result the Arctic ice has melted and sea levels have risen.If it continues to deteriorate,it will cause human catastrophe.In orde... At present,the greenhouse effect is caused by excessive emission of carbon dioxide.As a result the Arctic ice has melted and sea levels have risen.If it continues to deteriorate,it will cause human catastrophe.In order to avoid direct crisis and development,green energy is the only necessary way.Here,wind power plays an important role.Onshore wind power has been developed in Taiwan for more than 15 years.There are 341 onshore wind turbines that have been built so far.The total installed capacity is 678 MW high.Among them,Tai power occupies a total of 169 stations with a total installed capacity of 294 MW.Offshore wind turbines are also under construction.By 2025,the capacity will be 5 to 6 GW.It can be seen that the supply of wind power in the overall power market will become an important area in the future.Therefore,how to improve the availability and capacity factors of wind turbine power generation will become a top priority for owners.Since most of the world’s best wind farms are in the Taiwan Strait,this is a unique feature of Taiwan,although Taiwan lacks traditional fuels,petroleum,coal,natural gas and other resources.If these abundant solar and wind energy resources can be effectively utilized,in addition to reducing carbon emissions and contributing to the world,the development of green energy can also drive the development of the domestic green energy industry,also through the development of green energy to establish domestic operation and maintenance technology for wind turbines. 展开更多
关键词 Gear box Gearbox repair Wind turbine blade HUB Visual inspection.
下载PDF
Numerical simulation on vacuum solution heat treatment and gas quenching process of a low rhenium-containing Ni-based single crystal turbine blade 被引量:3
20
作者 Zhe-xin Xu Xiang-lin Su +1 位作者 Qing-yan Xu Bai-cheng Liu 《China Foundry》 SCIE 2016年第6期402-413,共12页
Numerical heat-transfer and turbulent flow model for an industrial high-pressure gas quenching vacuum furnace was established to simulate the heating, holding and gas fan quenching of a low rhenium-bearing Ni-based si... Numerical heat-transfer and turbulent flow model for an industrial high-pressure gas quenching vacuum furnace was established to simulate the heating, holding and gas fan quenching of a low rhenium-bearing Ni-based single crystal turbine blade. The mesh of simplified furnace model was built using finite volume method and the boundary conditions were set up according to the practical process. Simulation results show that the turbine blade geometry and the mutual shielding among blades have significant influence on the uniformity of the temperature distribution. The temperature distribution at sharp corner, thin wall and corner part is higher than that at thick wall part of blade during heating, and the isotherms show a toroidal line to the center of thick wall. The temperature of sheltered units is lower than that of the remaining part of blade. When there is no shelteration among multiple blades, the temperature distribution for all blades is almost identical. The fluid velocity field, temperature field and cooling curves of the single and multiple turbine blades during gas fan quenching were also simulated. Modeling results indicate that the loading tray, free outlet and the location of turbine blades have important influences on the flow field. The high-speed gas flows out from the nozzle is divided by loading tray, and the free outlet enhanced the two vortex flow at the end of the furnace door. The closer the blade is to the exhaust outlet and the nozzle, the greater the flow velocity is and the more adequate the flow is. The blade geometry has an effect on the cooling for single blade and multiple blades during gas fan quenching, and the effects in double layers differs from that in single layer. For single blade, the cooing rate at thin-walled part is lower than that at thick-walled part, the cooling rate at sharp corner is greater than that at tenon and blade platform, and the temperature at regions close to the internal position is decreased more slowly than that close to the surface. For multiple blades in single layer, the temperature at sharp corner or thin wall in the blade that close to the nozzles is much lower, and the temperature distribution of blades is almost parallel. The cooling rate inside the air current channel is lower than that of at the position near blade platform and tenon, and the effect of blade location to the nozzles on the temperature field inside the blade is lower than that on the blade surface. For multiple blades in double layers, the flow velocity is low, and the flow is not uniform for blades in the second-layer due to the shielding of blades in the first-layer. the cooling rate of blades in the second-layer is lower than that in the first-layer. The cooling rate of blade close to the nozzles in the first-layer is the higher than that of blade away from the nozzles in the second-layer, and the temperature distribution on blades in the same layer is almost parallel. The cooling rate in thin wall position of blade away from the nozzles is larger than that in tenon of the blade closer to the nozzles in the same layer. The cooling rate for blades in the secondlayer is much lower both in thin wall and tenon for blades away from the nozzles. 展开更多
关键词 Ni-based superalloy incipient melting cooling rates turbine blade
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部