期刊文献+
共找到4,331篇文章
< 1 2 217 >
每页显示 20 50 100
Rooted Tree Optimization for Wind Turbine Optimum Control Based on Energy Storage System
1
作者 Billel Meghni Afaf Benamor +7 位作者 Oussama Hachana Ahmad Taher Azar Amira Boulmaiz Salah Saad El-Sayed M.El-kenawy Nashwa Ahmad Kamal Suliman Mohamed Fati Naglaa K.Bahgaat 《Computers, Materials & Continua》 SCIE EI 2023年第2期3977-3996,共20页
The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage syst... The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage system is a mandatory.This paper investigates WT system operating at variable speed.The system contains of a permanent magnet synchronous generator(PMSG)supported by a battery storage system(BSS).To enhance the quality of active and reactive power injected into the network,direct power control(DPC)scheme utilizing space-vector modulation(SVM)technique based on proportional-integral(PI)control is proposed.Meanwhile,to improve the rendition of this method(DPC-SVM-PI),the rooted tree optimization technique(RTO)algorithm-based controller parameter identification is used to achieve PI optimal gains.To compare the performance ofRTO-based controllers,they were implemented and tested along with some other popular controllers under different working conditions.The obtained results have shown the supremacy of the suggested PIRTO algorithm compared to competing controllers regarding total harmonic distortion(THD),overshoot percentage,settling time,rise time,average active power value,overall efficiency,and active power steadystate error. 展开更多
关键词 Rooted tree optimization(RTO)method direct power control(DPC) wind turbine(WT) proportional integral(PI) PMSG
下载PDF
Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD 被引量:15
2
作者 Chen Jianbing Liu Youkun Bai Xueyuan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期55-75,共21页
A wind turbine system equipped with a tuned liquid column damper (TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting ... A wind turbine system equipped with a tuned liquid column damper (TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting response- equivalent accelerations on the shaking table. The test results show that the control effect of the TLCD system is significant in reducing the responses under both wind-wave equivalent loads and ground motions, but obviously varies for different inputs, Further, a blade-hub-tower integrated numerical model for the wind turbine system is established. The model is capable of considering the rotational effect of blades by combining Kane's equation with the finite element method. The responses of the wind tower equipped with TLCD devices are numerically obtained and compared to the test results, showing that under both controlled and uncontrolled conditions with and without blades' rotation, the corresponding responses exhibit good agreement. This demonstrates that the proposed numerical model performs well in capturing the wind-wave coupled response of the offshore wind turbine systems under control. Both numerical and experimental results show that the TLCD system can significantly reduce the structural response and thus improve the safety and serviceability of the offshore wind turbine tower systems. Additional issues that require further study are discussed. 展开更多
关键词 offshore wind turbine shaking table test TLCD numerical model vibration control
下载PDF
Adaptive and Predictive Control Strategies for Wind Turbine Systems: A Survey 被引量:6
3
作者 Magdi S.Mahmoud Mojeed O.Oyedeji 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期364-378,共15页
The wind turbine(WT) is a renewable energy conversion device for transformation of kinetic energy from the wind to mechanical energy for subsequent use in different forms.This paper focuses on wind turbine control des... The wind turbine(WT) is a renewable energy conversion device for transformation of kinetic energy from the wind to mechanical energy for subsequent use in different forms.This paper focuses on wind turbine control design strategies.The content is divided into the following parts: 1) An overview of the recent advances that have been made in the application of adaptive and model predictive control strategies for wind turbines. 2) Summarizes some important aspects of modeling of wind turbines for control studies. 3) Provides an outlook on the application of adaptive model predictive control for uncertain systems to stimulate new research interests for wind turbine systems. We provide an overall picture of the research results with evaluation of the merits/demerits. 展开更多
关键词 ADAPTIVE control model PREDICTIVE control WIND turbine(WT)
下载PDF
Evaluating effectiveness of multiple tuned mass dampers for vibration control of jacket offshore wind turbines under onshore and seafloor earthquakes
4
作者 Pan Zuxing Liu Yingzhou +4 位作者 Wang Wenhua Li Xin Zhao Shengxiao Jiang Zhenqiang Shang Jin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期1045-1063,共19页
The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.I... The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.In addition to the remarkable influence of the rotor system on the responses of the operation OWT under earthquakes,interactions among the natural modes of the grid loss OWT in the fore-aft and side-to-side directions are revealed.By comparing with the onshore earthquakes,the more significant differences of structural response are observed under the selected seafloor earthquakes,due to the longer duration and more abundant energy distribution around the natural frequencies of OWT.Concurrently,a multiple tuned mass damper(MTMD)is designed and applied to the operation and grid loss OWTs.Then,the comparisons of the mitigation effects under onshore and seafloor ground motions are carried out,and the necessity of applying seafloor ground motions to OWTs are proved.Moreover,in comparison to the operation OWT,more effective reductions are observed for the grid loss OWT under onshore and seafloor earthquakes using the designed MTMD.Therefore,the combined shutdown procedures and MTMD vibration control strategy is suggested for OWTs under earthquakes. 展开更多
关键词 offshore wind turbine EARTHQUAKE vibration control coupled analysis MTMD
下载PDF
Research on the Follow-Up Control Strategy of Biaxial Fatigue Test of Wind Turbine Blade Based on Electromagnetic Excitation
5
作者 Wenzhe Guo Leian Zhang +2 位作者 Chao Lv Weisheng Liu Jiabin Tian 《Energy Engineering》 EI 2023年第10期2307-2323,共17页
Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue... Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue testingmachine for electromagnetic excitation is designed,and the following strategy of the actual load and the target load is studied.A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic(Fuzzy FTRLS)is proposed to develop a fatigue loading following dynamic strategy,which adjusts the forgetting factor in the algorithmthrough fuzzy logic to overcome the contradiction between convergence accuracy and convergence speed and solve the phenomenon of amplitude overshoot and phase lag of the actual load relative to the target load.Combined with the previous research results,a simulation model was constructed to verify the strategy’s effectiveness.Field tests were carried out to verify its follow-up effect.The results showthat the tracking error of flapwise and edgewise direction iswithin 4%,which has better robustness and dynamic and static performance than the traditional Recursive Least Squares(RLS)algorithm. 展开更多
关键词 Wind turbine blades biaxial fatigue loading tracking control fuzzy FTRLS
下载PDF
Coordinated Rotor-Side Control Strategy for Doubly-FedWind Turbine under Symmetrical and Asymmetrical Grid Faults
6
作者 Quanchun Yan Chao Yuan +2 位作者 WenGu Yanan Liu Yiming Tang 《Energy Engineering》 EI 2023年第1期49-68,共20页
In order to solve the problems of rotor overvoltage,overcurrent and DC side voltage rise caused by grid voltage drops,a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of ro... In order to solve the problems of rotor overvoltage,overcurrent and DC side voltage rise caused by grid voltage drops,a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of rotor side converter of the doubly-fed generator is proposed.When the power grid voltage drops symmetrically,the generator approximate equation under steady-state conditions is no longer applicable.Considering the dynamic process of stator current excitation,according to the change of stator flux and the depth of voltage drop,the system can dynamically provide reactive power support for parallel nodes and suppress the rise of DC side voltage and rotor over-current.When the grid voltage drops asymmetrically,the positive and negative sequence components are separated in the rotating coordinate system.The doubly fed generator model is established to suppress the rotor positive sequence current and negative sequence current respectively.At the same time,the output voltage limit of the converter is discussed,and the reference value is adjusted within the allowable output voltage range.In order to adapt to the occurrence of different types of power grid faults and complex operating conditions,a fast switching module of fault type detection and rotor control mode is designed to detect the type of power grid faults and voltage drop depth in real time and switch the rotor side control mode dynamically.Finally,the simulation model of the doubly fed wind turbine is constructed in Matlab/Simulink.The simulation results verify that the proposed control strategy can improve the low-voltage ride through performance of the system when dealing with the symmetrical and asymmetric voltage drop of the power grid and identify the power grid fault type and provide the correct control strategy. 展开更多
关键词 Doubly-fed wind turbines symmetrical faults asymmetrical faults low voltage ride through rotor side control fault type detection
下载PDF
Hydraulic turbine system identification and predictive control based on GASA-BPNN 被引量:1
7
作者 Xiao-ping Jiang Zi-ting Wang +1 位作者 Hong Zhu Wen-shuai Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第7期1240-1247,共8页
Based on the characteristics of nonlinearity,multi-case,and multi-disturbance,it is difficult to establish an accurate parameter mod-el on the hydraulic turbine system which is limited by the degree of fitting between... Based on the characteristics of nonlinearity,multi-case,and multi-disturbance,it is difficult to establish an accurate parameter mod-el on the hydraulic turbine system which is limited by the degree of fitting between parametric model and actual model,and the design of con-trol algorithm has a certain degree of limitation.Aiming at the modeling and control problems of hydraulic turbine system,this paper proposes hydraulic turbine system identification and predictive control based on genetic algorithm-simulate anneal and back propagation neural network(GASA-BPNN),and the output value predicted by GASA-BPNN model is fed back to the nonlinear optimizer to output the control quantity.The results show that the output speed of the traditional control system increases greatly and the speed of regulation is slow,while the speed of GASA-BPNN predictive control system increases little and the regulation speed is obviously faster than that of the traditional control system.Compared with the output response of the traditional control of the hydraulic turbine governing system,the neural network predictive control-ler used in this paper has better effect and stronger robustness,solves the problem of poor generalization ability and identification accuracy of the turbine system under variable conditions,and achieves better control effect. 展开更多
关键词 hydraulic turbine system system identification genetic algorithm simulated annealing algorithm predictive control
下载PDF
PI-MPC Frequency Control of Power System in the Presence of DFIG Wind Turbines 被引量:1
8
作者 Michael Z. Bernard T. H. Mohamed +2 位作者 Raheel Ali Yasunori Mitani Yaser Soliman Qudaih 《Engineering(科研)》 2013年第9期43-50,共8页
For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and ... For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT. 展开更多
关键词 DOUBLY Fed Induction Generator Power system Model PREDICTIVE control) Proportional Integral controller DFIG WIND turbine WIND Energy system (WES)
下载PDF
Vibration attenuation performance of wind turbine tower using a prestressed tuned mass damper under seismic excitation
9
作者 Lei Zhenbo Liu Gang +1 位作者 Wang Hui Hui Yi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期511-524,共14页
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau... With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation. 展开更多
关键词 wind turbine tower prestressed tuned mass damper vibration control seismic excitation numerical simulation
下载PDF
Turbine speed control system based on a fuzzy-PID 被引量:1
10
作者 孙建华 汪伟 余海燕 《Journal of Marine Science and Application》 2008年第4期268-272,共5页
The flexibility demand of marine nuclear power plant is very high,the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled,and the normal PID control of the ... The flexibility demand of marine nuclear power plant is very high,the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled,and the normal PID control of the turbine speed can't meet the control demand.This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control's quick dynamic response and PID control's steady state performance.The simulation shows the improvement of the response time and steady state performance of the control system. 展开更多
关键词 涡轮速度控制系统 模糊控制 PID控制 灵活性
下载PDF
Terminal Sliding Mode Controllers for Hydraulic Turbine Governing System with Bifurcated Penstocks under Input Saturation
11
作者 Ji Liang Zhihuan Chen +2 位作者 Xiaohui Yuan Binqiao Zhang Yanbin Yuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期603-629,共27页
Terminal sliding mode controller method is introduced to enhance the regulation performance of the hydraulic turbine governing system(HTGS).For the purpose of describing the characteristics of controlled system and de... Terminal sliding mode controller method is introduced to enhance the regulation performance of the hydraulic turbine governing system(HTGS).For the purpose of describing the characteristics of controlled system and deducing the control rule,a nonlinear mathematic model of hydraulic turbine governing system with bifurcated penstocks(HTGSBF)under control input saturation is established,and the input/output state linearization feedback approach is used to obtain the relationship between turbine speed and controller output.To address the control input saturation problem,an adaptive assistant system is designed to compensate for controller truncation.Numerical simulations have been conducted under fixed point stabilization and periodic orbit tracking conditions to compare the dynamic performances of proposed terminal sliding mode controllers and conventional sliding mode controller.The results indicate that the proposed terminal sliding mode controllers not only have a faster response and accurate tracking results,but also own a stronger robustness to the system parameter variations.Moreover,the comparisons between the proposed terminal sliding mode controllers and current most often used proportional-integral-differential(PID)controller,as well its variant NPID controller,are discussed at the end of this paper,where the superiority of the terminal sliding mode controllers also have been verified. 展开更多
关键词 Hydraulic turbine governing system bifurcated penstock sliding mode controller terminal sliding mode controller saturation compensator
下载PDF
OBSO Based Fractional PID for MPPT-Pitch Control of Wind Turbine Systems
12
作者 Ibrahim M.Mehedi Ubaid M.Al-Saggaf +3 位作者 Mahendiran T.Vellingiri Ahmad H.Milyani Nordin Bin Saad Nor Zaihar Bin Yahaya 《Computers, Materials & Continua》 SCIE EI 2022年第5期4001-4017,共17页
In recent times,wind energy receives maximum attention and has become a significant green energy source globally.The wind turbine(WT)entered into several domains such as power electronics that are employed to assist t... In recent times,wind energy receives maximum attention and has become a significant green energy source globally.The wind turbine(WT)entered into several domains such as power electronics that are employed to assist the connection process of a wind energy system and grid.The turbulent characteristics of wind profile along with uncertainty in the design of WT make it highly challenging for prolific power extraction.The pitch control angle is employed to effectively operate the WT at the above nominal wind speed.Besides,the pitch controller needs to be intelligent for the extraction of sustainable secure energy and keep WTs in a safe operating region.To achieve this,proportional–integral–derivative(PID)controllers are widely used and the choice of optimal parameters in the PID controllers needs to be properly selected.With this motivation,this paper designs an oppositional brain storm optimization(OBSO)based fractional order PID(FOPID)design for sustainable and secure energy in WT systems.The proposed model aims to effectually extract the maximum power point(MPPT)in the low range of weather conditions and save the WT in high wind regions by the use of pitch control.The OBSO algorithm is derived from the integration of oppositional based learning(OBL)concept with the traditional BSO algorithm in order to improve the convergence rate,which is then applied to effectively choose the parameters involved in the FOPID controller.The performance of the presented model is validated on the pitch control of a 5 MW WT and the results are examined under different dimensions.The simulation outcomes ensured the promising characteristics of the proposed model over the other methods. 展开更多
关键词 Wind turbine wind energy pitch control brain storm optimization PID controller maximum power point
下载PDF
Self-Tuning Control Techniques for Wind Turbine and Hydroelectric Plant Systems
13
作者 Silvio Simani Stefano Alvisi Mauro Venturini 《Journal of Power and Energy Engineering》 2019年第1期27-61,共35页
The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, sel... The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, self-tuning control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Some of the considered methods were already verified on wind turbine systems, and important advantages may thus derive from the appropriate implementation of the same control schemes for hydroelectric plants. This represents the key point of the work, which provides some guidelines on the design and the application of these control strategies to these energy conversion systems. In fact, it seems that investigations related with both wind and hydraulic energies present a reduced number of common aspects, thus leading to little exchange and share of possible common points. This consideration is particularly valid with reference to the more established wind area when compared to hydroelectric systems. In this way, this work recalls the models of wind turbine and hydroelectric system, and investigates the application of different control solutions. Another important point of this investigation regards the analysis of the exploited benchmark models, their control objectives, and the development of the control solutions. The working conditions of these energy conversion systems will also be taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many installations. 展开更多
关键词 Wind turbine system Hydroelectric Plant SIMULATOR MODEL-BASED control DATA-DRIVEN Approach SELF-TUNING control Robustness and Reliability
下载PDF
Power Maximization and Control of Variable-Speed Wind Turbine System Using Extremum Seeking
14
作者 Safanah M. Rafaat Rajaa Hussein 《Journal of Power and Energy Engineering》 2018年第1期51-69,共19页
Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of tw... Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of two-mass drive train, a Squirrel Cage Induction Generator (SCIG), and voltage source converter control by Space Vector Pulse Width Modulation (SPVWM). To achieve Maximum Power Point Tracking (MPPT), the reference speed to the generator is searched via Extremum Seeking Control (ESC). ESC was designed for wind turbine region II operation based on dither-modulation scheme. ESC is a model-free method that has the ability to increase the captured power in real time under turbulent wind without any requirement for wind measurements. The controller is designed in two loops. In the outer loop, ESC is used to set a desired reference speed to PI controller to regulate the speed of the generator and extract the maximum electrical power. The inner control loop is based on Indirect Field Orientation Control (IFOC) to decouple the currents. Finally, Particle Swarm Optimization (PSO) is used to obtain the optimal PI parameters. Simulation and control of the system have been accomplished using MATLAB/Simulink 2014. 展开更多
关键词 Wind turbine Indirect Field Orientation control (IFOC) Maximum POWER Point Tracking (MPPT) Extremum SEEKING control (ESC) Particle SWARM Op-timization (PSO) PI controller
下载PDF
An Advanced Control Strategy for Dual-Actuator Driving System in Full-Scale Fatigue Test of Wind Turbine Blades
15
作者 Guanhua Wang Jinghua Wang +2 位作者 Xuemei Huang Leian Zhang Weisheng Liu 《Energy Engineering》 EI 2022年第4期1649-1662,共14页
A new dual-actuator fatigue loading system of wind turbine blades was designed.Compared with the traditional pendulum loading mode,the masses in this system only moved linearly along the loading direction to increase ... A new dual-actuator fatigue loading system of wind turbine blades was designed.Compared with the traditional pendulum loading mode,the masses in this system only moved linearly along the loading direction to increase the exciting force.However,the two actuators and the blade constituted a complicated non-linear energy transferring system,which led to the non-synchronization of actuators.On-site test results showed that the virtual spindle synchronous strategy commonly used in synchronous control was undesirable and caused the instability of the blade’s amplitude eventually.A cross-coupled control strategy based on the active disturbance rejection algorithm was proposed.Firstly,a control system model was built according to the synchronization error and tracking error.Furthermore,based on arranging the transition process,estimating the system state and error feedback,and compensating disturbance,an active disturbance rejection controller was designed by adopting the optimal control function.Finally,on-site test results showed that the cross-coupled control strategy based on the active disturbance rejection algorithm could ensure the synchronization of two actuators.The maximum speed synchronization error of the two motors was less than 16 RPM,the displacement synchronization error of the two actuators was less than 0.25 mm and approaching zero after 4 seconds,and the peak value of vibration of the blade was less than 5 mm,which satisfied the fatigue test requirement. 展开更多
关键词 Wind turbine blades full-scale fatigue test synchronous control cross-coupled control strategy active disturbance rejection control algorithm
下载PDF
An Adaptive Single Neural Control for Variable Step-Size P&O MPPT of Marine Current Turbine System
16
作者 LI Ming-zhu WANG Tian-zhen +1 位作者 ZHOU Fu-na SHI Ming 《China Ocean Engineering》 SCIE EI CSCD 2021年第5期750-758,共9页
Marine current energy has been increasingly used because of its predictable higher power potential.Owing to the external disturbances of various flow velocity and the high nonlinear effects on the marine current turbi... Marine current energy has been increasingly used because of its predictable higher power potential.Owing to the external disturbances of various flow velocity and the high nonlinear effects on the marine current turbine(MCT)system,the nonlinear controllers which rely on precise mathematical models show poor performance under a high level of parameters’uncertainties.This paper proposes an adaptive single neural control(ASNC)strategy for variable step-size perturb and observe(P&O)maximum power point tracking(MPPT)control.Firstly,to automatically update the neuron weights of SNC for the nonlinear systems,an adaptive mechanism is proposed to adaptively adjust the weighting and learning coefficients.Secondly,aiming to generate the exact reference speed for ASNC to extract the maximum power,a variable step-size law based on speed increment is designed to strike a balance between tracking speed and accuracy of P&O MPPT.The robust stability of the MCT control system is guaranteed by the Lyapunov theorem.Comparative simulation results show that this strategy has favorable adaptive performance under variable velocity conditions,and the MCT system operates at maximum power point steadily. 展开更多
关键词 marine current turbine system perturb and observe single neural control adaptive mechanism maximum power point tracking
下载PDF
Design and Efficient Controller for Micro Turbine System
17
作者 G. Saravanan I. Gnanambal 《Circuits and Systems》 2016年第8期1224-1232,共9页
In this modern era, power generation seems to be a very demanding factor. New models and methods have been proposed to derive from various natural and manmade resources. In such instances, this paper gives a detailed ... In this modern era, power generation seems to be a very demanding factor. New models and methods have been proposed to derive from various natural and manmade resources. In such instances, this paper gives a detailed report on the power generation from Micro Turbines. Micro turbine plays a very important role in electric power generation. Especially they are used in the combined cycle process power plants. The parameters of Rowen’s model 265-MW single shaftheavy duty gas turbines which are used in dynamic studies are estimated in this paper using the operational and performance data. These data are also used to briefly explain the extraction of parameters of the used model. Micro turbine parameters are approximated using simple thermodynamics assumptions. Micro turbine power generation seems to be an uprising and a promising source and an exact design with a perfect model is capable of producing the highest efficiency. Thus this paper is proposed on the aspects of social awareness to elaborate the control design of Micro Turbine Power Generation System. The parameters of micro turbine models are derived and the results of several simulated tests using Matlab/Simulink are presented. 展开更多
关键词 Dynamic Simulation Micro turbine control Design
下载PDF
Grid Harmonic and Control Delay Compensation for Three-phase Grid-connected VSIs in Small Wind Turbine Systems
18
作者 Mary Kaye Chris Diduch Idris Gadoura 《电力电子技术》 CSCD 北大核心 2011年第8期24-31,共8页
Voltage space vector pulse-width modulation(SVPWM) has been widely applied to control current in three-phase voltage source inverters(VSI).However,as a voltage type modulator,SVPWM has certain drawbacks compared with ... Voltage space vector pulse-width modulation(SVPWM) has been widely applied to control current in three-phase voltage source inverters(VSI).However,as a voltage type modulator,SVPWM has certain drawbacks compared with current type modulators for grid-connected applications.For a grid-connected VSI,the performance of existing current controllers based on SVPWM is compromised by grid harmonics,control delay and system nonlinearities such as switching dead time.Moreover,unlike current type PWM,SVPWM does not inherently have over-current protection.A novel SVPWM-based current controller is proposed for three-phase grid-connected VSIs for small wind turbine appli-cations.To overcome the drawbacks of SVPWM,a grid harmonic compensation method is proposed along with compen-sation for control delays.Both simulation and experimental results have established excellent steady-state response and fast dynamic response of the current controller.In addition,the DSP-based control system has both improved real-time control performance and fast response for over-current protection. 展开更多
关键词 摘要 编辑部 编辑工作 作者
下载PDF
Modeling a high output marine steam generator feedwater control system which uses parallel turbine-driven feed pumps
19
作者 邱志强 邹海 孙建华 《Journal of Marine Science and Application》 2008年第3期212-217,共6页
当轮船以高速度旅行时,平行汽轮机驱动的给水泵被需要。为了学习海洋的蒸气生成器给水,控制使用平行的系统汽轮机驱动喂泵,海洋的蒸气生成器给水控制系统的一个数学模型被开发它包括二个蒸气生成器和平行的数学模型汽轮机驱动喂给水... 当轮船以高速度旅行时,平行汽轮机驱动的给水泵被需要。为了学习海洋的蒸气生成器给水,控制使用平行的系统汽轮机驱动喂泵,海洋的蒸气生成器给水控制系统的一个数学模型被开发它包括二个蒸气生成器和平行的数学模型汽轮机驱动喂给水管子的泵以及数学模型并且喂调整阀门。平行的操作条件点汽轮机驱动喂泵被 Chebyshev 曲线计算合适的方法。为蒸气发电机的一个水位控制器和一个旋转速度控制器为汽轮机驱动喂泵也在模型被包括。数学模型和他们的控制器的精确性被从一个模拟器把他们的结果与那些作比较验证。 展开更多
关键词 给水控制系统 蒸汽发生器 给水泵 涡轮
下载PDF
The Control System Simulation of Variable-Speed Constant-Frequency Wind Turbine
20
作者 窦金延 曹娜 《Journal of Measurement Science and Instrumentation》 CAS 2010年第S1期202-206,共5页
In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control... In general,Variable-Speed Constant Frequency (VSCF)Wind generation system is controlled by stator voltage orientation method which based on the mathematic model of VSCF Wind generation system and discussed the control strategy.Present the whole dynamic control model of variable-speed wind generator system in MATLAB/ Simulink,and the simulation results confirm the validity and effectiveness of the proposed control strategy. 展开更多
关键词 Variable-Speed constant-frequency MODEL WIND turbi
下载PDF
上一页 1 2 217 下一页 到第
使用帮助 返回顶部