This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time doma...This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated.展开更多
This paper describes the numerical study on film cooling effectiveness and aerodynamic loss due to coolant and main stream mixing for a turbine guide vane. The effects of blowing ratio, mainstream Mach number, surface...This paper describes the numerical study on film cooling effectiveness and aerodynamic loss due to coolant and main stream mixing for a turbine guide vane. The effects of blowing ratio, mainstream Mach number, surface curvature on the cooling effectiveness and mixing loss were studied and discussed. The numerical results show that the distributions of film cooling effectiveness on the suction surface and pressure surface at the same blowing ratio(BR) are different due to local surface curvature and pressure gradient. The aerodynamic loss features for film holes on the pressure surface are also different from film holes on the suction surface.展开更多
Oscillating water columns(OWCs)are most widely used in coastal wave energy conversion.The air duct opens into the atmosphere through the air turbine,which is the power take-off device,and this results in a pressure dr...Oscillating water columns(OWCs)are most widely used in coastal wave energy conversion.The air duct opens into the atmosphere through the air turbine,which is the power take-off device,and this results in a pressure drop across the air chamber.However,because of the complex configure of the impulse turbine and its high rotation speed,it is difficult to install it in the experimental simulator and numerical model.Therefore,the turbine damping effects on the operation of the OWC air chamber are induced to predict its performance more accurately.Orifice plates are used as a substitute for the impulse turbine as it generates a similar pressure drop and power output;the experimental and numerical pressure drops and output powers are compared.A 3D numerical wave tank based on the two-phase VOF model is established using the commercial CFD code Fluent,which can predict air flow and pressure variations in the chamber and duct.Water surface elevations,air flow velocity and pressure variation inside the chamber with the orifice plate are studied numerically,and validated by the corresponding experimental data.The air chamber of the Yongsoo OWC pilot plant is used as the engineering project case.The operating performance of the air chamber installed with a 0.428D orifice plate as the substitute for the designed impulse turbine is computed and analyzed.It is found that the turbine damping effects will cause around 30%reduction in the peak values of the pneumatic energy output of the OWC air chamber in the resonant wave domain.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51239007)
文摘This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated.
基金financially supported by the National Natural Science Foundation of China through Grant No.51336007
文摘This paper describes the numerical study on film cooling effectiveness and aerodynamic loss due to coolant and main stream mixing for a turbine guide vane. The effects of blowing ratio, mainstream Mach number, surface curvature on the cooling effectiveness and mixing loss were studied and discussed. The numerical results show that the distributions of film cooling effectiveness on the suction surface and pressure surface at the same blowing ratio(BR) are different due to local surface curvature and pressure gradient. The aerodynamic loss features for film holes on the pressure surface are also different from film holes on the suction surface.
基金supported by the National Natural Science Foundation of China(Grant No.51279190&51311140259)Shandong Natural Science Funds for Distinguished Young Scholar(Grant No.JQ201314)+1 种基金"111"Project(Grant No.B14028)KRISO Endowment(Grant No.PES 2190)
文摘Oscillating water columns(OWCs)are most widely used in coastal wave energy conversion.The air duct opens into the atmosphere through the air turbine,which is the power take-off device,and this results in a pressure drop across the air chamber.However,because of the complex configure of the impulse turbine and its high rotation speed,it is difficult to install it in the experimental simulator and numerical model.Therefore,the turbine damping effects on the operation of the OWC air chamber are induced to predict its performance more accurately.Orifice plates are used as a substitute for the impulse turbine as it generates a similar pressure drop and power output;the experimental and numerical pressure drops and output powers are compared.A 3D numerical wave tank based on the two-phase VOF model is established using the commercial CFD code Fluent,which can predict air flow and pressure variations in the chamber and duct.Water surface elevations,air flow velocity and pressure variation inside the chamber with the orifice plate are studied numerically,and validated by the corresponding experimental data.The air chamber of the Yongsoo OWC pilot plant is used as the engineering project case.The operating performance of the air chamber installed with a 0.428D orifice plate as the substitute for the designed impulse turbine is computed and analyzed.It is found that the turbine damping effects will cause around 30%reduction in the peak values of the pneumatic energy output of the OWC air chamber in the resonant wave domain.