This article, in order to guarantee the stable mode transition in tandem turbo-ramjet engines, investigates the multi-objective and multi-variable goal programming algorithm. First, it introduces the structural featur...This article, in order to guarantee the stable mode transition in tandem turbo-ramjet engines, investigates the multi-objective and multi-variable goal programming algorithm. First, it introduces the structural features of the variable cycle turbo-ramjet engines, the principles of selecting the mode transition operation point and the design parameters, and the characteristics of the turbofan mode and the ramjet mode. Second, a component-based variable cycle turbo-ramjet engine model is developed to simulate the mode transition process. Third, the Newton-Raphson algorithm is used to solve the multi-variable and multi-objective optimization problem. The results show that with the maximum residua of only 0.06%, this algorithm has an acceptable convergence that meets the predetermined goals. Finally, the simulation shows that the stable turbo-ramjet mode transition could be realized with the mode transition control law developed by the algorithm.展开更多
Combined-cycle pulse detonation engines are promising contenders for hypersonic propulsion systems.In the present study,design and propulsive performance analysis of combined-cycle pulse detonation turbofan engines(PD...Combined-cycle pulse detonation engines are promising contenders for hypersonic propulsion systems.In the present study,design and propulsive performance analysis of combined-cycle pulse detonation turbofan engines(PDTEs)is presented.Analysis is done with respect to Mach number at two consecutive modes of operation:(1)Combined-cycle PDTE using a pulse detonation afterburner mode(PDA-mode)and(2)combined-cycle PDTE in pulse detonation ramjet engine mode(PDRE-mode).The performance of combined-cycle PDTEs is compared with baseline afterbuming turbofan and ramjet engines.The comparison of afterburning modes is done for Mach numbers from 0 to 3 at 15.24 km altitude conditions,while that of pulse detonation ramjet engine(PDRE)is done for Mach 1.5 to Mach 6 at 18.3 km altitude conditions.The analysis shows that the propulsive performance of a tubine engine can be greatly improved by replacing the conventional afterbumer with a pulse detonation afterburner(PDA).The PDRE also outperforms its ramjet counterpart at all flight conditions considered herein.The gains obtained are outstanding for both the combined-cycle PDTE modes compared to baseline turbofan and ramjet engines.展开更多
文摘This article, in order to guarantee the stable mode transition in tandem turbo-ramjet engines, investigates the multi-objective and multi-variable goal programming algorithm. First, it introduces the structural features of the variable cycle turbo-ramjet engines, the principles of selecting the mode transition operation point and the design parameters, and the characteristics of the turbofan mode and the ramjet mode. Second, a component-based variable cycle turbo-ramjet engine model is developed to simulate the mode transition process. Third, the Newton-Raphson algorithm is used to solve the multi-variable and multi-objective optimization problem. The results show that with the maximum residua of only 0.06%, this algorithm has an acceptable convergence that meets the predetermined goals. Finally, the simulation shows that the stable turbo-ramjet mode transition could be realized with the mode transition control law developed by the algorithm.
基金This work was supported by the National Natural Science Foundation of China(NSFC No.50776045,51076064)China Scholarship Council's International Students Scholarship(CSC No.2011YXS867)from the Minister of Education,China and NUAA.
文摘Combined-cycle pulse detonation engines are promising contenders for hypersonic propulsion systems.In the present study,design and propulsive performance analysis of combined-cycle pulse detonation turbofan engines(PDTEs)is presented.Analysis is done with respect to Mach number at two consecutive modes of operation:(1)Combined-cycle PDTE using a pulse detonation afterburner mode(PDA-mode)and(2)combined-cycle PDTE in pulse detonation ramjet engine mode(PDRE-mode).The performance of combined-cycle PDTEs is compared with baseline afterbuming turbofan and ramjet engines.The comparison of afterburning modes is done for Mach numbers from 0 to 3 at 15.24 km altitude conditions,while that of pulse detonation ramjet engine(PDRE)is done for Mach 1.5 to Mach 6 at 18.3 km altitude conditions.The analysis shows that the propulsive performance of a tubine engine can be greatly improved by replacing the conventional afterbumer with a pulse detonation afterburner(PDA).The PDRE also outperforms its ramjet counterpart at all flight conditions considered herein.The gains obtained are outstanding for both the combined-cycle PDTE modes compared to baseline turbofan and ramjet engines.