Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by ser...Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by serially concatenating channel code module and space-time code module with an interleaver in between. As an example, the system is constructed by employing low decoding complexity turbo-SPC (single parity check) code as outer module and linear complex field space-time code as inner module, which achieves full diversity and lossless equivalent channel capacity. Simulation results prove that our designed system performs well and it only loses 0.8 dB from multiple-input multiple-output (MIMO) capacity at BER = 10^-5 in the case of information bit length 6048. Compared with turbo code-based systems, it also has lower error floor.展开更多
The paper presents a kind of reasonable structure for implementing MQAM T-TCM based on the principles of turbo codes and TCM for the first time. It can also be expanded to PSK T-TCM system, and the corresponding decod...The paper presents a kind of reasonable structure for implementing MQAM T-TCM based on the principles of turbo codes and TCM for the first time. It can also be expanded to PSK T-TCM system, and the corresponding decoding algorithm is derived. By computer simulation,its performance is analyzed. The results show that T-TCM takes the advantages of turbo codes and TCM technology, and is a kind of bandwidth-efficient coded-modulation technique obtaining high coding gain. So, in the future, T-TCM would be applied in many fields.展开更多
Coding techniques have always been a major area of scientific interest. Due to this interest, many coding schemes were invented. Eventually, their implementation in various systems contributed in the evolvement of Wir...Coding techniques have always been a major area of scientific interest. Due to this interest, many coding schemes were invented. Eventually, their implementation in various systems contributed in the evolvement of Wireless Communications. A breakthrough was definitely Turbo coding. Particularly, the concept of joining two or more convolutional encoders in parallel (PCCC) or in serial (SCCC), along with the iterative decoding technique, literally raised the expectations of the anticipated BER performance. In fact, Concatenated Convolutional Codes clearly outperform convolutional codes. Moreover, various systems, either under development or either for future use, will have high standards. The previous systems should present exceptional tolerance of noise effects and consequently a low overall number of received errors. For this purpose a new PCCC design was developed. The system’s performance analysis, using an AWGN channel, showed better results for various iterations compared to other schemes such as typical PCCC, SCCC and finally a Convolutional encoder with a Viterbi decoder.展开更多
We combine the Turbo codes with differential frequency hopping (DFH) technique and propose a new technique called Turbo-DFH coding. The structures of Turbo-DFH encoder and decoder are given. Taking aim at characterist...We combine the Turbo codes with differential frequency hopping (DFH) technique and propose a new technique called Turbo-DFH coding. The structures of Turbo-DFH encoder and decoder are given. Taking aim at characteristic of Turbo-DFH system, the modified Log-MAP algorithm is presented and used for iterative decoding of Turbo-DFH decoder. Simulation results show that because the ideas of random coding and iterative decoding are used, the bit error rate (BER) performance of the Turbo-DFH system is better than that of the conventional DFH system.展开更多
Wireless communication systems have greatly advanced during the last years. A significant contributor in these systems’ performance has been Orthogonal Frequency Division Multiplexing (OFDM). Since its invention, it ...Wireless communication systems have greatly advanced during the last years. A significant contributor in these systems’ performance has been Orthogonal Frequency Division Multiplexing (OFDM). Since its invention, it is considered to be a technological leap. This leap in splitting an information stream in multiple frequency carriers has been adapted by various scientists working on the development of wireless systems. Moreover, as OFDM presented excellent tolerance of channel fading and noise signals, the evolvement in terms of speed and reliability was consequent, because only a small stream of information is lost due to noise effects. OFDM along with the knowledge that Turbo codes is another excellent scheme of reducing BER, has triggered us to expand our research. So, we experimented in simulation level not only in joining OFDM with Turbo Codes but even in finding a better Turbo scheme compared to a typical PCCC, SCCC and a Convolutional encoder with Viterbi decoder. As the last goal has already been accomplished, in this paper is presented the new OFDM system consisted of our Turbo scheme. The analysis of the previous system took into consideration the effects of an AWGN channel. Also, this noise analysis was conducted using a simulation platform with specific attributes such as transmitting and receiving fixed number of subcarriers (2048 carriers after IFFT block) while using different types of convolutional concatenated codes, such as PCCC (Parallel), SCCC (Serial) and the new PCCC scheme. The results clearly show not only the improvement in the BER performance of the Turbo Coded OFDM systems (compared to others consisted of Viterbi decoders) but the overall superiority of the proposed design.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.60332030, 60572157), and the National High-TechnologY Research and Development of China (Grant No.863-2003AA123310)
文摘Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by serially concatenating channel code module and space-time code module with an interleaver in between. As an example, the system is constructed by employing low decoding complexity turbo-SPC (single parity check) code as outer module and linear complex field space-time code as inner module, which achieves full diversity and lossless equivalent channel capacity. Simulation results prove that our designed system performs well and it only loses 0.8 dB from multiple-input multiple-output (MIMO) capacity at BER = 10^-5 in the case of information bit length 6048. Compared with turbo code-based systems, it also has lower error floor.
文摘The paper presents a kind of reasonable structure for implementing MQAM T-TCM based on the principles of turbo codes and TCM for the first time. It can also be expanded to PSK T-TCM system, and the corresponding decoding algorithm is derived. By computer simulation,its performance is analyzed. The results show that T-TCM takes the advantages of turbo codes and TCM technology, and is a kind of bandwidth-efficient coded-modulation technique obtaining high coding gain. So, in the future, T-TCM would be applied in many fields.
文摘Coding techniques have always been a major area of scientific interest. Due to this interest, many coding schemes were invented. Eventually, their implementation in various systems contributed in the evolvement of Wireless Communications. A breakthrough was definitely Turbo coding. Particularly, the concept of joining two or more convolutional encoders in parallel (PCCC) or in serial (SCCC), along with the iterative decoding technique, literally raised the expectations of the anticipated BER performance. In fact, Concatenated Convolutional Codes clearly outperform convolutional codes. Moreover, various systems, either under development or either for future use, will have high standards. The previous systems should present exceptional tolerance of noise effects and consequently a low overall number of received errors. For this purpose a new PCCC design was developed. The system’s performance analysis, using an AWGN channel, showed better results for various iterations compared to other schemes such as typical PCCC, SCCC and finally a Convolutional encoder with a Viterbi decoder.
文摘We combine the Turbo codes with differential frequency hopping (DFH) technique and propose a new technique called Turbo-DFH coding. The structures of Turbo-DFH encoder and decoder are given. Taking aim at characteristic of Turbo-DFH system, the modified Log-MAP algorithm is presented and used for iterative decoding of Turbo-DFH decoder. Simulation results show that because the ideas of random coding and iterative decoding are used, the bit error rate (BER) performance of the Turbo-DFH system is better than that of the conventional DFH system.
文摘Wireless communication systems have greatly advanced during the last years. A significant contributor in these systems’ performance has been Orthogonal Frequency Division Multiplexing (OFDM). Since its invention, it is considered to be a technological leap. This leap in splitting an information stream in multiple frequency carriers has been adapted by various scientists working on the development of wireless systems. Moreover, as OFDM presented excellent tolerance of channel fading and noise signals, the evolvement in terms of speed and reliability was consequent, because only a small stream of information is lost due to noise effects. OFDM along with the knowledge that Turbo codes is another excellent scheme of reducing BER, has triggered us to expand our research. So, we experimented in simulation level not only in joining OFDM with Turbo Codes but even in finding a better Turbo scheme compared to a typical PCCC, SCCC and a Convolutional encoder with Viterbi decoder. As the last goal has already been accomplished, in this paper is presented the new OFDM system consisted of our Turbo scheme. The analysis of the previous system took into consideration the effects of an AWGN channel. Also, this noise analysis was conducted using a simulation platform with specific attributes such as transmitting and receiving fixed number of subcarriers (2048 carriers after IFFT block) while using different types of convolutional concatenated codes, such as PCCC (Parallel), SCCC (Serial) and the new PCCC scheme. The results clearly show not only the improvement in the BER performance of the Turbo Coded OFDM systems (compared to others consisted of Viterbi decoders) but the overall superiority of the proposed design.