Performance of Turbo-Codes in communication channels with impulsive noise is analyzed. First, mathematical model of impulsive noise is presented because it has non-Gaussian nature and is found in many wireless channel...Performance of Turbo-Codes in communication channels with impulsive noise is analyzed. First, mathematical model of impulsive noise is presented because it has non-Gaussian nature and is found in many wireless channels due to impulsive phenomena of radio-frequency interference. Then, with linear Log-MAP decoding algorithm for its low complexity, Turbo-Codes are adopted and analyzed in such communication channels. To confirm the performance of the proposed method, simulations on both static and fully interleaved flat Rayleigh fading channels with impulsive noise have been carried out. It is shown that Turbo-Codes have a better performance than the conventional methods (e.g. convolutionally coded system).展开更多
Space-Time Block (STB) code has been an effective transmit diversity technique for combating fading due to its orthogonal design, simple decoding and high diversity gains. In this paper, a unit-rate complex orthogonal...Space-Time Block (STB) code has been an effective transmit diversity technique for combating fading due to its orthogonal design, simple decoding and high diversity gains. In this paper, a unit-rate complex orthogonal STB code for multiple antennas in Time Division Duplex (TDD) mode is proposed. Meanwhile, Turbo Coding (TC) is employed to improve the performance of proposed STB code further by utilizing its good ability to combat the burst error of fading channel. Compared with full-diversity multiple antennas STB codes, the proposed code can implement unit rate and partial diversity; and it has much smaller computational complexity under the same system throughput. Moreover, the application of TC can effectively make up for the performance loss due to partial diversity. Simulation results show that on the condition of same system throughput and concatenation of TC, the proposed code has lower Bit Error Rate (BER) than those full-diversity codes.展开更多
文摘Performance of Turbo-Codes in communication channels with impulsive noise is analyzed. First, mathematical model of impulsive noise is presented because it has non-Gaussian nature and is found in many wireless channels due to impulsive phenomena of radio-frequency interference. Then, with linear Log-MAP decoding algorithm for its low complexity, Turbo-Codes are adopted and analyzed in such communication channels. To confirm the performance of the proposed method, simulations on both static and fully interleaved flat Rayleigh fading channels with impulsive noise have been carried out. It is shown that Turbo-Codes have a better performance than the conventional methods (e.g. convolutionally coded system).
基金Supported by Chinese 863 project (No.2001 AA 123042).
文摘Space-Time Block (STB) code has been an effective transmit diversity technique for combating fading due to its orthogonal design, simple decoding and high diversity gains. In this paper, a unit-rate complex orthogonal STB code for multiple antennas in Time Division Duplex (TDD) mode is proposed. Meanwhile, Turbo Coding (TC) is employed to improve the performance of proposed STB code further by utilizing its good ability to combat the burst error of fading channel. Compared with full-diversity multiple antennas STB codes, the proposed code can implement unit rate and partial diversity; and it has much smaller computational complexity under the same system throughput. Moreover, the application of TC can effectively make up for the performance loss due to partial diversity. Simulation results show that on the condition of same system throughput and concatenation of TC, the proposed code has lower Bit Error Rate (BER) than those full-diversity codes.